Turning A Chromebox Into A Proper Power-Efficient PC

Google’s ChromeOS and associated hardware get a lot of praise for being easy to manage and for providing affordable hardware for school and other educational settings. It’s also undeniable that their locked-down nature forms a major obstacle and provides limited reusability.

That is unless you don’t mind doing a bit of hacking. The Intel Core i3-8130U based Acer CXI3 Chromebox that the [Hardware Haven] YouTube channel got their mittens on is a perfect example.

The Acer CXI3 in all its 8th-gen Intel Core i3 glory. (Credit: Hardware Haven, YouTube)
The Acer CXI3 in all its 8th-gen Intel Core i3 glory. (Credit: Hardware Haven, YouTube)

This is a nice mini PC, with modular SODIMM RAM, an NVMe storage M.2 slot as well as a slot for the WiFi card (or SATA adapter). After resetting the Chromebox to its default configuration and wiping the previous user, it ran at just a few watts idle at the desktop. As this is just a standard x86_64 PC, the only thing holding it back from booting non-ChromeOS software is the BIOS, which is where [MrChromebox]‘s exceedingly useful replacement BIOSes for supported systems come into play, with easy to follow instructions.

Reflashing the Acer CXI3 unit was as easy as removing the write-protect screw from the mainboard, running the Firmware Utility Script from a VT2 terminal (Ctrl+Alt+F2 on boot and chronos as login) and flashing either the RW_LEGACY or UEFI ROM depending on what is supported and desired. This particular Chromebox got the full UEFI treatment, and after upgrading the NVMe SSD, Debian-based Proxmox installed without a hitch. Interestingly, idle power dropped from 2.6 watts under ChromeOS to 1.6 watts under Proxmox.

If you have a Chromebox that’s supported by [MrChromebox], it’s worth taking a poke at, with some solutions allowing you to even dualboot ChromeOS and another OS if that’s your thing.

Continue reading “Turning A Chromebox Into A Proper Power-Efficient PC”

Printable Pegboard PC Shows Off The RGB

Sometimes it seems odd that we would spend hundreds (or thousands) on PC components that demand oodles of airflow, and stick them in a little box, out of sight. The fine folks at Corsair apparently agree, because they’ve released files for an open-frame pegboard PC case on Printables.

According to the write-up on their blog, these prints have held up just fine with ordinary PLA– apparently there’s enough airflow around the parts that heat sagging isn’t the issue we would have suspected. ATX and ITX motherboards are both supported, along with a few power supply form factors. If your printer is smaller, the ATX mount is per-sectioned for your convenience. Their GPU brackets can accommodate beefy dual- and triple-slot models. It’s all there, if you want to unbox and show off your PC build like the work of engineering art it truly is.

Of course, these files weren’t released from the kindness of Corsair’s corporate heart– they’re meant to be used with fancy pegboard desks the company also sells. Still to their credit, they did release the files under a CC4.0-Attribution-ShareAlike license. That means there’s nothing stopping an enterprising hacker from remixing this design for the ubiquitous SKÅDIS or any other perfboard should they so desire.

We’ve covered artful open-cases before here on Hackaday, but if you prefer to hide the expensive bits from dust and cats, this mid-century box might be more your style. If you’d rather no one know you own a computer at all, you can always do the exact opposite of this build, and hide everything inside the desk.

ASUS GPU Uses Gyroscope To Warn For Sagging Cards

It’s not really an understatement to say that over the years videocards (GPUs) — much like CPU coolers — have become rather chonky. Unfortunately, the PCIe slots they plug into were never designed with multi-kilogram cards in mind. All this extra weight is of course happily affected by gravity.

The dialog in Asus' GPU Tweak software that shows the degrees of sag for your GPU. (Credit: Asus)

The problem has gotten to the point that the ASUS ROG Astral RTX 5090 card added a Bosch Sensortec BMI323 inertial measurement unit (IMU) to provide an accelerometer and angular rate (gyroscope) measurements, as reported by [Uniko’s Hardware] (in Chinese, see English [Videocardz] article).

There are so-called anti-sag brackets that provide structural support to the top of the GPU where it isn’t normally secured. But since this card weighs in at over 6 pounds (3 kilograms) for the air cooled model, it appears the bracket wasn’t enough, and active monitoring was necessary.

The software allows you to set a sag angle at which you receive a notification, which would presumably either allow you to turn off the system and readjust the GPU, or be forewarned when it is about to rip itself loose from the PCIe slot and crash to the bottom of the case.

From PostScript To PDF

There was a time when each and every printer and typesetter had its own quirky language. If you had a wordprocessor from a particular company, it worked with the printers from that company, and that was it. That was the situation in the 1970s when some engineers at Xerox Parc — a great place for innovation but a spotty track record for commercialization — realized there should be a better answer.

That answer would be Interpress, a language for controlling Xerox laser printers. Keep in mind that in 1980, a laser printer could run anywhere from $10,000 to $100,000 and was a serious investment. John Warnock and his boss, Chuck Geschke, tried for two years to commercialize Interpress. They failed.

So the two formed a company: Adobe. You’ve heard of them? They started out with the idea of making laser printers, but eventually realized it would be a better idea to sell technology into other people’s laser printers and that’s where we get PostScript.

Continue reading “From PostScript To PDF”

Black and white photo of Evertop computer on desk

The Evertop: A Low-Power, Off-Grid Solar Gem

When was the last time you saw a computer actually outlast your weekend trip – and then some? Enter the Evertop, a portable IBM XT emulator powered by an ESP32 that doesn’t just flirt with low power; it basically lives off the grid. Designed by [ericjenott], hacker with a love for old-school computing and survivalist flair, this machine emulates 1980s PCs, runs DOS, Windows 3.0, and even MINIX, and stays powered for hundreds of hours. It has a built-in solar panel and 20,000mAh of battery, basically making it an old-school dream in a new-school shell.

What makes this build truly outstanding – besides the specs – is how it survives with no access to external power. It sports a 5.83-inch e-ink display that consumes zilch when static, hardware switches to cut off unused peripherals (because why waste power on a serial port you’re not using?), and a solar panel that pulls 700mA in full sun. And you guessed it – yes, it can hibernate to disk and resume where you left off. The Evertop is a tribute to 1980s computing, and a serious tool to gain some traction at remote hacker camps.

For the full breakdown, the original post has everything from firmware details to hibernation circuitry. Whether you’re a retro purist or an off-grid prepper, the Evertop deserves a place on your bench. Check out [ericjenott]’s project on Github here.

Jenny’s (Not Quite) Daily Drivers: Raspberry Pi 1

An occasional series of mine on these pages has been Daily Drivers, in which I try out operating systems from the point of view of using them for my everyday Hackaday work. It has mostly featured esoteric or lesser-used systems, some of which have been unexpected gems and others have been not quite ready for the big time.

Today I’m testing another system, but it’s not quite the same as the previous ones. Instead I’m looking at a piece of hardware, and I’m looking at it for use in my computing projects rather than as my desktop OS. You’ll all be familiar with it: the original Raspberry Pi appeared at the end of February 2012, though it would be May of that year before all but a lucky few received one. Since then it has become a global phenomenon and spawned a host of ever-faster successors, but what of that original board from 2012 here in 2025? If you have a working piece of hardware it makes sense to use it, so how does the original stack up? I have a project that needs a Linux machine, so I’m dusting off a Model B and going down memory lane.

Continue reading “Jenny’s (Not Quite) Daily Drivers: Raspberry Pi 1”

Turning Old Cellphones Into SBCs

[David] sent us a tip about a company in Belgium, Citronics, that is looking to turn old cellphones into single-board computers for embedded Linux applications. We think it’s a great idea, and have long lamented how many pocket supercomputers simply get tossed in the recycling stream, when they could be put to use in hacker projects. So far, it looks like Citronics only has a prototyping breakout board for the Fairphone 2, but it’s a promising idea.

One of the things that’s stopping us from re-using old phones, of course, is the lack of easy access to the peripherals. On the average phone, you’ve got one USB port and that’s it. The Citronics dev kit provides all sorts of connectivity: 4x USB 2.0, 1x Ethernet 10/100M, and a Raspberry Pi Header (UART, SPI, I2C, GPIO). At the same time, for better or worse, they’ve done away with the screen and its touch interface, and the camera too, but they seem to be keeping all of the RF capabilities.

The whole thing runs Linux, which means that this won’t work with every phone out there, but projects like PostmarketOS and others will certainly broaden the range of usable devices. And stripping off the camera and screen has the secondary advantages of removing the parts that get most easily broken and have the least support from custom Linux distros.

We wish we had more details about the specifics of the break-out boards, but we like the idea. How long before we see an open-source implementation of something similar? There are so many cheap used and broken cellphones out there that it’s certainly a worthwhile project!