3D Printing Antennas With Dielectric Resin

[Machining and Microwaves] has long wanted to use a 3D printer to print RF components for antennas and microwave lenses. He heard that Rogers — the company known for making PCB substrates, among other things — had a dielectric resin available and asked them if he could try some. They agreed, with some stipulations, including that he had to visit their facility and show his designs in a video. Because of that, the video seems a little bit like a commercial, but we think he is genuinely excited about the possibility of the resin.

Since he was in their facility, he was able to interview several of the people behind the resin, and they had some interesting observations about keeping resin consistent during printing and how the moonbounce feed he wanted to print would work.

Some of the exotic RF test equipment was interesting to see, too. The microwave lenses look like some kind of modern art. According to the Roger’s website:

Radix Printable Dielectric materials are a ceramic-filled, UV-curable polymer designed for use with photopolymer 3D-printing processes like sterolithography (SLA) and digital light processing (DLP) printing. These materials and printing processes enable the use of high-resolution, scalable 3D-printing for complex RF dielectric components such as gradient index (GRIN) lenses or three-dimensional circuits. The 2.8Dk printable dielectric is designed to have low loss characteristics through millimeter wave (mmWave) frequencies and low moisture absorption for end-use applications.

It isn’t clear to us that you could use this resin in your own printers, but they did look pretty similar to what we have hanging around except, perhaps, for the continuous circulation of the resin pool. We figured the resin wasn’t inexpensive. In fact, we found a liter online for $1,863. We don’t know if that’s the suggested retail price or not, but we also suppose if you need this material, you won’t be that surprised at the cost.

If you don’t need microwave frequencies, you might be able to get by with some easier techniques. Or, you can even do something slightly more difficult but probably a lot cheaper.

Continue reading “3D Printing Antennas With Dielectric Resin”

Fully 3D Printed And Metalized Horn Antennas Are Shiny And Chrome

We’ve seen our share of 3D printed antennas before, but none as well documented and professionally tested as [Glenn]’s 3D printed and metalized horn antennas. It certainly helps that [Glenn] is the principal engineer at an antenna testing company, with access to an RF anechoic chamber and other test equipment.

Horn antennas are a fairly simple affair, structurally speaking, with a straight-sided horn-shaped “cone” and a receptacle for standardized waveguide or with an appropriate feed, coaxial adapters. They are moderately directional and can cover a wide range of frequencies. These horns are often used in radar guns and as feedhorns for parabolic dishes or other types of larger antenna. They are also used to discover the cosmic microwave background radiation of our universe and win Nobel Prizes.

[Glenn]’s antennas were modeled in Sketchup Make, and those files plus standard STL files are available for download. To create your own horn, print the appropriate file on a normal consumer-grade fused deposition printer. For antennas that perform well in WiFi frequency ranges you may need to use a large-format printer, as the prints can be “the size of a salad bowl”. Higher frequency horns can easily fit on most print beds.

After printing, [Glenn] settled on a process of solvent smoothing the prints, then metalizing them with commonly available conductive spray paints. The smoothing was found to be necessary to achieve the expected performance. Two different paints were tested, with a silver-based coating being the clear winner.

The full write-up has graphs of test results and more details on the process that led to these cheap, printed antenna that rival the performance of more expensive commercial products.

If you’re interested in other types of 3D printed antenna, we’ve previously covered a helical satcom feed, a large discone antenna, and an aluminum-taped smaller discone antenna.

3D Printed Antenna Is Broadband

Antennas are a tricky thing, most of them have a fairly narrow range of frequencies where they work well. But there are a few designs that can be very broadband, such as the discone antenna. If you haven’t seen one before, the antenna looks like — well — a disk and a cone. There are lots of ways to make one, but [mkarliner] used a 3D printer and some aluminum tape to create one and was nice enough to share the plans with the Internet.

As built, the antenna works from 400 MHz and up, so it can cover some ham bands and ADS-B frequencies. The plastic parts act as an anchor and allow for coax routing. In addition, the printed parts can hold a one-inch mast for mounting.

Continue reading “3D Printed Antenna Is Broadband”