Hacker Chris Edwards demonstrating his wireless Amiga

Retro Wi-Fi On A Dime: Amiga’s Slow Lane Connection

In a recent video, [Chris Edwards] delves into the past, showing how he turned a Commodore Amiga 3000T into a wireless-capable machine. But forget modern Wi-Fi dongles—this hack involves an old-school D-Link DWL-G810 wireless Ethernet bridge. You can see the Amiga in action in the video below.

[Chris] has a quirky approach to retrofitting. He connects an Ethernet adapter to his Amiga, bridges it to the D-Link, and sets up an open Wi-Fi network—complete with a retro 11 Mbps speed. Then again, the old wired connection was usually 10 Mbps in the old days.

To make it work, he even revived an old Apple AirPort Extreme as a supporting router since the old bridge didn’t support modern security protocols. Ultimately, the Amiga gets online wirelessly, albeit at a leisurely pace compared to today’s standards. He later demonstrates an upgraded bridge that lets him connect to his normal network.

We’ve used these wireless bridges to put oscilloscopes and similar things on wireless, but newer equipment usually requires less work even if it doesn’t already have wireless. We’ve also seen our share of strange wireless setups like this one. If you are going to put your Amgia on old-school networking, you might as well get Java running, too.

Continue reading “Retro Wi-Fi On A Dime: Amiga’s Slow Lane Connection”

WiFi Meets LoRa For Long Range

What do you get when you cross WiFi and LoRa? Researchers in China have been doing this, and they call the result WiLo. They claim to get reliable connections over about half a kilometer. Typical WiFi runs 40 to 60 meters, barring any Pringle’s cans or other exotic tricks.

According to [Michelle Hampson] writing in IEEE Spectrum, the researchers manipulated Wi-Fi’s OFDM multiplexing to emulate LoRa’s chirp-spreading signal. The advantage is that existing WiFi hardware can use the protocol to increase range.

Continue reading “WiFi Meets LoRa For Long Range”

This Bluetooth GATT Course Is A Must Watch

Bluetooth is a backbone technology for innumerable off-the-shelf and hacker devices. You should know how to work with it – in particular, nowadays you will certainly be working at the Bluetooth GATT (Generic Attribute) layer. This two-part project by [V. Hunter Adams] of Cornell fame spares no detail in making sure you learn Bluetooth GATT for all your hacking needs – not only will you find everything you could want to know, you also get example GATT server and client application codebases to use in your projects, designed to work with the commonly available Pi Pico W!

What’s better than a visual demonstration? The video below shows the GATT server running on a Pico W – handling six different parameters at once. [Hunter] pokes at the server’s characteristics with a smartphone app – sending string data back and forth, switching an LED, and even changing parameters of audio or video color output by the Pico. Flash the server code into your Pico W, play with it, read through it, and follow the tutorial to learn what makes it tick.
Continue reading “This Bluetooth GATT Course Is A Must Watch”

A 1930s Ham Station

[Mikrowave1] wanted to build an authentic 1930s-style ham radio station that was portable. He’s already done a regenerative receiver, but now he’s starting on a tube transmitter that runs on batteries. He’s settled on a popular design for the time, a Jones push-pull transmitter. Despite the tubes, it will only put out a few watts, which is probably good for the batteries which, at the time, wouldn’t have been like modern batteries. You can see the kickoff video below.

According to the video, these kinds of radios were popular with expeditions to exotic parts of the world. He takes a nostalgic look back at some of the radios and antennas used in some of those expeditions.

Continue reading “A 1930s Ham Station”

Wardriving Tools In The Modern Era

When WiFi first came out, it was a super exciting time. The technology was new, and quite a bit less secure back then—particularly if not configured properly. That gave rise to the practice of wardriving—driving around with a computer, looking for unsecured networks, often just for the fun of it. [Simon] has been examining this classic practice from a modern perspective. 

He’s been at the game for a long time—from back in the days when you might head out with a thick old laptop, a bunch of PCMCIA cards, and dangly antennas. It’s much more advanced these days, given we’ve got WiFi on all different bands and Bluetooth devices to consider to boot. Heck, even Zigbee, if you’re hunting down a rogue house full of Internet of Things gadgets.

Today, when he’s out researching the wireless landscape, he uses devices like the Flipper Zero, the Raspberry Pi, and a Google Pixel 5 running the WiGLE WiFi Wardriving app. [Simon] notes that the latter is the easiest way to get started if you’ve got an Android phone. Beyond that, there’s software and hardware out there these days that can do amazing things compared to the simple rigs of yesteryear.

If you’re out looking for free internet these days, wardriving might be a bit pointless given it’s available in practically every public building you visit. But if you’re a wireless security researcher, or just curious about what your own home setup is putting out, it might be worth looking at these tools! Happy hunting.

Australia Didn’t Invent WiFi, Despite What You’ve Heard

Wireless networking is all-pervasive in our modern lives. Wi-Fi technology lives in our smartphones, our laptops, and even our watches. Internet is available to be plucked out of the air in virtually every home across the country. Wi-Fi has been one of the grand computing revolutions of the past few decades.

It might surprise you to know that Australia proudly claims the invention of Wi-Fi as its own. It had good reason to, as well— given the money that would surely be due to the creators of the technology. However, dig deeper, and you’ll find things are altogether more complex.

Continue reading “Australia Didn’t Invent WiFi, Despite What You’ve Heard”

Decoding Meshtastic With GNU Radio

Meshtastic is a way to build mesh networks using LoRa that is independent of cell towers, hot spots or traditional repeaters. It stands to reason that with an SDR and GNU Radio, you could send and receive Meshtastic messages. That’s exactly what [Josh Conway] built, and you can see a video about the project, Meshtastic_SDR, below. The video is from [cemaxecuter], who puts the library through its paces.

For hardware, the video uses a Canary I as well as the WarDragon software-defined radio kit which is an Airspy R2 and a mini PC running Dragon OS — a Linux distribution aimed at SDR work —  in a rugged case. GNU Radio, of course, uses flows which are really just Python modules strung together with a GUI.

Continue reading “Decoding Meshtastic With GNU Radio”