Building A Word Clock With Genetic Algorithms

Maybe it was a language barrier he ran into, or possibly an inclination to do things the hard and smart way, but we really like [Alessio]’s take on building the display for his word clock. Instead of relying on a pre-designed word layout, he made his own word pattern with a genetic algorithm.

While looking at other word clock builds on the Internet, [Alessio] noticed all the DIY copies used the same pattern of letters as the original QLOCKTWO word clock. There are obvious reasons for this, laziness chief among them, but [Alessio] decided to do one better. Armed with JGAP, he made a 10×10 German language word clock and a 11×11 English language word clock.

[Alessio]’s algorithm takes a list of regular expressions – ‘five past four’ and ‘four five’ are both valid expressions for 4:05 – and combines solutions together for a hopefully optimal solution. One added bonus of [Alessio]’s method is the ability to generate non-square word clocks. On his project page, [Alessio] put up examples for round, triangular, and diamond-shaped word clocks.

[Alessio] ended up building a 10×10 square German language word clock with an Arduino Nano, DS1307 real-time clock, RGB LEDs, and a few shift registers. Very nice work for a custom-designed word clock.

MegaUpload Captcha Cracking In JavaScript


This was certainly the last thing we expected to see today. [ShaunF] has created a Greasemonkey script to bypass the captcha on filehosting site Megaupload. It uses a neural network in JavaScript to do all of the OCR work. It will auto submit and start downloading too. It’s quite a clever hack and is certainly helped by the simple 3 character captcha the site employs. Attempting to do the same thing with ReCAPTCHA has proven much more difficult.

UPDATE: [John Resig] explained of how it works.

[via Waxy]

Genetic Programming


[Ron Alsing] wanted to try out some genetic programming, so he created a simple test problem: Could you render the Mona Lisa using just 50 semitransparent polygons? The program starts with a random DNA sequence. It then mutates and compares itself to the original image. If the mutation is closer, it becomes the new sequence. The final image he shows looks pretty good after 904,314 iterations.

[prunesquallor] pointed out a genetic algorithm project of his own. It’s a flash program to evolve a car. The car tries to get as far as possible on a set terrain without the passenger circles hitting the ground. The wheel size and positions can change along with the spring length, constant, and damping. A graph tracks the best performance along with the mean. He’s planning on building a version that lets you change the parameters.

[via Waxy]