Inside A CAN Bus Mileage Manipulator

In the days of carburetors and leaf spring suspensions, odometer fraud was pretty simple to do just by disconnecting the cable or even winding the odometer backwards. With the OBD standard and the prevalence of electronics in cars, promises were made by marketing teams that this risk had all but been eliminated. In reality, however, the manipulation of CAN bus makes odometer fraud just as easy, and [Andras] is here to show us exactly how easy with a teardown of a few cheap CAN bus adapters.

We featured another project that was a hardware teardown of one of these devices, but [Andras] takes this a step further by probing into the code running on the microcontroller. One would imagine that basic measures would have been taken by the attackers to obscure code or at least disable debugging modes, but on this one no such effort was made. [Andras] was able to dump the firmware from both of his test devices and start analyzing them.

Analyzing the codes showed identical firmware running on both devices, which made his job half as hard. It looked like the code was executing a type of man-in-the-middle attack on the CAN bus which allowed it to insert the bogus mileage reading. There’s a lot of interesting information in [Andras]’s writeup though, so if you’re interested in CAN bus or attacks like this, it’s definitely worth a read.

The $50 Ham: Going Mobile

So far in this series, everything we’ve covered has been geared around the cheapest and easiest possible means of getting on the air: getting your Technician license, buying your first low-end portable transceiver, and checking in on the local repeater nets. That’s all good stuff, and chances are you can actually take all three of those steps and still have change left over from your $50 bill. Like I said, amateur radio doesn’t have to be expensive to be fun.

But at some point, every new ham is going to yearn for that first “real” rig, something with a little more oomph in terms of power, and perhaps with a few more features. For many Technicians, the obvious choice is a mobile rig, something that can be used to chat with fellow hams on the way to work, or to pass the time while on long road trips. Whatever your motivation is, once you buy a radio, you have to install it, and therein lie challenges galore, both electrical and mechanical.

I recently took the plunge on a mobile rig, and while the radio and antenna were an order of magnitude more expensive than $50, the process of installing it was pretty cheap. But it’s not the price of the thing that’s important in this series; rather, it’s to show that ham radio is all about doing it yourself, even when that means tearing your car apart from the inside out and rebuilding it around a radio.

Continue reading “The $50 Ham: Going Mobile”

DIY Lambo That Made The Real Lamborghini Take Notice

When you start sharing your projects with the world, you never know who might take notice. [Sterling Backus] and his son [Xander] have been building a functional Lamborghini Aventador look alike in their garage, and the real Lamborghini company caught wind of it and decided to turn it into an awesome Christmas ad.

Named the AXAS Interceptor by its creators, the car is built from scratch around a custom tubular space frame chassis. Most of the body panels are 3D printed and then skinned with carbon fibre, with a few sheet metal panels mixed in. The interior is mix of parts from other cars and aftermarket components, with 3D printing to pull everything together. The drivetrain consists of an engine from a Corvette, a transaxle from a Porsche 996, with the rest of the chassis components being either aftermarket or custom-fabricated pieces.

[Sterling] got an unexpectedcall from Lamborghini, and they arranged to secretly sneak a real Aventador into the garage in the dead of night to surprise the rest of the family, and let them borrow it for a few weeks. Lamborghini got some marketing out of it, which most people would probably agree is a pretty good deal. We would admit that we’re quite envious.

The car is driveable, but still many hours from being complete. [Sterling] admits that he is no car building professional, but we’re impressed by what he has been able to achieve so far with this ambitious project, and we’re looking forward to the finished product.

If you want to get your feet wet with your first project car, here’s how you pick one.

Continue reading “DIY Lambo That Made The Real Lamborghini Take Notice”

Bullet-proofing Your Car With An Affordable Composite Armor

Remember those actions movies like The Fast and the Furious where cars are constantly getting smashed by fast flying bullets? What would it have taken to protect the vehicles from AK-47s? In [PrepTech]’s three-part DIY composite vehicle armor tutorial, he shows how he was able to make his own bulletproof armor from scratch. Even if you think the whole complete-collapse-of-civilization thing is a little far-fetched, you’ve got to admit that’s pretty cool.

The first part deals with actually building the composite. He uses layers of stainless steel, ceramic mosaic tiles, and fiberglass, as well as epoxy resin in order to build the composite. The resin was chosen for its high three-dimensional cross-linked density, while the fiberglass happened to be the most affordable composite fabric. Given the nature of the tiny shards produced from cutting fiberglass, extreme care must be taken so that the shards don’t end up in your clothes or face afterwards. Wearing a respirator and gloves, as well as a protective outer layer, can help.

After laminating the fabric, it hardens to the point where individual strands become stiff. The next layer – the hard ceramic – works to deform and slow down projectiles, causing it to lose around 40% of its kinetic energy upon impact. He pipes silicone between the tiles to increase the flexibility. Rather than using one large tile, which can only stand one impact, [PrepTech] uses a mosaic of tiles, allowing multiple tiles to be hit without affecting the integrity of surrounding tiles. While industrial armor uses boron or silicon carbide, ceramic is significantly lower cost.

The stainless steel is sourced from a scrap junkyard and cut to fit the dimensions of the other tiles before being epoxied to the rest of the composite. The final result is allowed to sit for a week to allow the epoxy to fully harden before being subject to ballistics tests. The plate was penetrated by a survived shots from a Glock, ┼ákorpion vz. 61, and AK-47, but was penetrated by the Dragunov sniper rifle. Increasing the depth of the stainless steel to at least a centimeter of ballistic grade steel may have helped protect the plate from higher calibers, but [PrepTech] explained that he wasn’t able to obtain the material in his country.

Nevertheless, the lower calibers were still unable to puncture even the steel, so unless you plan on testing out the plate on high caliber weapons, it’s certainly a success for low-cost defense tools.

Continue reading “Bullet-proofing Your Car With An Affordable Composite Armor”

Model S Motor And Volt Battery Go Together Like Peanut Butter And Jelly

A common project category on this site is “put a Raspberry Pi in it”. For people who wrench on their cars, a similarly popular project is the “LS Swap”. Over the past few years, the world of electronics and automotive hacking started to converge in the form of electric car conversions, and [Jalopnik] proclaims the electric counterpart to “LS Swap” is to put a Telsa Model S motor and a Chevy Volt battery into a project car.

The General Motors LS engine lineup is popular with petro heads for basically the same reasons Raspberry Pi are popular with the digital minded. They are both compact, very powerful for the money, have a large body of existing projects to learn from, and an equally large ecosystem of accessories to help turn ideas into reality. So if someone desired more power than is practical from a car’s original engine, the obvious next step is to swap it out for an LS.

Things may not be quite as obvious in the electric world, but that’s changing. Tesla Model S and Chevrolet Volt have been produced in volume long enough for components to show up at salvage yards. And while not up to the levels of LS swaps or Pi mods, there’s a decent sized body of knowledge for powerful garage-built electric cars thanks to pioneers like [Jim Belosic] and a budding industry catering to those who want to build their own. While the decision to use Tesla’s powerful motor is fairly obvious, the choice of Volt battery may be surprising. It’s a matter of using the right tool for the job: most of these projects are not concerned about long range offered by Tesla’s battery. A Volt battery pack costs less while still delivering enough peak power, and as it was originally developed to fit into an existing chassis, its smaller size also benefits garage tinkerers fitting it into project cars.

While Pi SBCs and LS engines are likely to dominate their respective fields for the foreseeable future, the quickly growing and evolving world of electric vehicles means this winning combo of today are likely to be replaced by some other combination in the future. But even though the parts may change, the spirit of hacking will not.

[Photo: by Jim Belosic of motor used in his Teslonda project]

Dashboard Dongle Teardown Reveals Hardware Needed To Bust Miles

Progress and the proliferation of computers in automotive applications have almost made the shade tree mechanic a relic of the past. Few people brave the engine compartment of any car made after 1999 or so, and fewer still dive into the space behind the dashboard. More’s the pity, because someone may be trying to turn back the odometer with one of these nefarious controller area network (CAN bus) dongles.

Sold through the usual outlets and marketed as “CAN bus filters,” [Big Clive] got a hold of one removed from a 2015 Mercedes E-Class sedan, where a mechanic had found it installed between the instrument cluster and the OEM wiring harness. When the dongle was removed, the odometer instantly added 40,000 kilometers to its total, betraying someone’s dishonesty.

[Big Clive]’s subsequent teardown of the unit showed that remarkably little is needed to spoof a CAN bus odometer. The board has little more than an STM32F microcontroller, a pair of CAN bus transceiver chips, and some support circuitry like voltage regulators. Attached to a wiring harness that passes through most of the lines from the instrument cluster unmolested while picking off the CAN bus lines, the device can trick the dashboard display into showing whatever number it wants. The really interesting bit would be the code, into which [Clive] does not delve. That’s a pity, but as he points out, it’s likely the designers set the lock bit on the microcontroller to cover their tracks. There’s no honor among thieves.

We found this plunge into the dark recesses of the automotive world fascinating, and [Big Clive]’s tutelage top-notch as always. If you need to get up to speed on CAN bus basics, check out [Eric Evenchick]’s series on automotive network hacking.

Continue reading “Dashboard Dongle Teardown Reveals Hardware Needed To Bust Miles”

Converting A Tesla To A Pickup Truck

The renowned inventor of useless robots [Simone Giertz] has outdone herself this time. She, along with a team of engineers featuring [Rich Rebuilds], [Laura Kampf], and [Marcos Ramirez], recently decided to convert a Tesla into a pickup truck, and make a video along the way, all while salvaging what remains they can of the back of the car and making the final product roadworthy. Yeah, this is a couple weeks old now, and yeah, it’s kind of a commercial, but really: [Simone Giertz] and Co. rock.

In her vlog of the experience, the team starts by gutting out the interior of the car in order to find out the weight distribution and form of the outer frame. Essentially, in order to create the pickup truck, a portion of the back of the car needs to be removed, with additional beams and support welded in depending on the consequent structural integrity. With a sawzall and angle grinder, the top portion of the frame is cut and taken out, but not before a worrying glance brings about the realization that the car needs exterior support during its modifications.

After the cushions, glass, wiring, and all other accessories are removed, they install a truck bed from another sacrificial pickup truck, as well as a roof rack to complete the look. Amidst the deconstruction and reconstruction, there are moments when the car encounters a “Safety restraint system fault” or when the team accidentally lines the inside of the car with fiberglass right before shooting their video. Between complaints of the different clip sizes used and the clear time pressure of the project, it’s a funny and informative look into a pretty unique car mod.

The final commercial they made of their Tesla-pickup hybrid, dubbed Truckla, is available on [Giertz]’s YouTube channel.

Continue reading “Converting A Tesla To A Pickup Truck”