Clock Mechanism Goes Crazy For Arduino

You’ve doubtless seen those ubiquitous clock modules, especially when setting clocks for daylight savings time. You know the ones: a single AA battery, a wheel to set the time, and two or three hands to show the time. They are cheap and work well enough. But [Playful Technology] wanted to control the hands with an Arduino directly and, in the process, he shows us how these modules work.

If you’ve never studied the inside of these clock modules, you may be surprised about how they actually work. A crystal oscillator pulses a relatively large electromagnet. A small plastic gear has a magnetic ring and sits near the electromagnet.

Each time the polarity of the electromagnet flips, the ring turns 180 degrees to face the opposite magnetic pole to the electromagnet. This turns the attached gear which is meshed with other gears to divide the rotation rate down to once per 24 hours, once per hour, and once per minute. Pretty clever.

That makes it easy to control the hands. You simply detach the electromagnet from the rest of the circuit and control it yourself. The module he used had a mechanical limitation that prevents the hands from moving well at more than about 100 times normal speed.

We wondered how he made the hands reverse and, apparently, there is a way to get the drive gear to move in reverse, but it isn’t always reliable. Of course, you could also replace the drive mechanism with something like an RC servo or other motor and it sounds like he has done this and plans to show it off in another video.

We’ve seen the opposite trick before, too. If you really want an easy-to-control analog clock, try this one Continue reading “Clock Mechanism Goes Crazy For Arduino”

It’s Always Pizza O’Clock With This AI-Powered Timepiece

Right up front, we’ll say that [likeablob]’s pizza-faced clock gives us mixed feelings about our AI-powered future. On the one hand, if that’s Stable Diffusion’s idea of what a pizza looks like, then it should be pretty easy to slip the virtual chains these algorithms no doubt have in store for us. Then again, if they do manage to snare us and this ends up on the menu, we’ll pray for a mercifully quick end to the suffering.

The idea is pretty simple; the clock’s face is an empty pizza pan that fills with pretend pizza as the day builds to noon, whereupon pizza is removed until midnight when the whole thing starts again. The pizza images are generated by a two-stage algorithm using Stable Diffusion 1.5, and tend to favor suspiciously uncooked whole basil sprigs along with weird pepperoni slices and Dali-esque globs of cheese. Everything runs on a Raspberry Pi Zero W, with the results displayed on a 4″ diameter LCD with an HDMI adapter. Alternatively, you can just hit the web app and have a pizza clock on your desktop. If pizza isn’t your thing, fear not — other food and non-food images are possible, limited only by Stable Diffusion’s apparently quite limited imagination.

As clocks go, this one is pretty unique. But we’re used to seeing unusual clocks around here, from another food-centric timepiece to a clock that knits.

Split-Flap Clock Makes A Nice Side Quest In Larger Project

Sometimes projects spawn related projects that take on a life of their own. That’s OK, especially when the main project is large and complex, In that case, side-quest projects provide a deliverable that can help keep the momentum of the whole project going. The mojo must flow, after all.

That seems to be what’s going on with this beautiful split-flap clock build by [Erich Styger]. It’s part of a much larger effort which will eventually see 64 separate split-flap units chained together. This project has been going on for a while; we first featured it back in 2022 when it was more of a prototype. Each unit is scratch-built, using laser-cut fiberboard for parts like the spool and frame, thin PVC stock for the flip cards, and CNC-cut vinyl for the letters and numbers. Each unit is powered by its own stepper motor.

To turn four of these displays into a clock, [Erich] milled up a very nice enclosure from beech. From the outside it’s very clean and simple, almost like something from Ikea, but the inside face of the enclosure is quite complex. [Erich] had to mill a lot of nooks and crannies into the wood to provide mounting space and clearance for the split-flap mechanism, plus a thinned-down area at the top of each window to serve as a stop for the flaps. The four displays are controlled by a single controller board, which houses an NXP K22FN512 microcontroller along with four stepper drivers and interfaces for the Hall-effect sensors needed to home each display. There’s also an RS-485 interface that lets the controllers daisy-chain together, which is how the big 64-character display will be controlled.

We’re looking forward to that, but in the meantime, enjoy the soft but pleasant flappy goodness of the clock in the brief video below.

Continue reading “Split-Flap Clock Makes A Nice Side Quest In Larger Project”

A glowing pocket watch with Roman numerals.

What Is The Hour? It’s XVII O’ Clock

When live-action role playing, or LARPing, one must keep fully in tune with the intended era. That means no digital watches, and certainly no pulling out your fantastic rectangle from the future to find out if you’re late picking up the kid.

The guts of a pocket watch with glowing Roman numerals.So what do you do when you’re LARPing at 2 PM, but you gotta be back at the soccer practice field by 5 PM? Well, you fashion a period-appropriate timepiece like [mclien]’s 17 o’ Clock. Visually, it’s about as close to a pocket sundial as you can get. It’s deliberately non-connected, and its only function is to tell the time.

But how? If you visually divide the watch across the top and bottom, you get two sets of Roman numerals. The top half handles the hour, and the bottom half the minute. [mclien] started designing this in 2018 and picked it back up in the second half of 2024.

Back to the non-connected part. The only permanently-powered part of the project is a high-precision real-time clock (RTC). The rest uses a power latching circuit, which turns on the Adafruit Trinket M0 to show the time using a NeoPixel ring. Be sure to check out the awesome project logs with fantastic pictures throughout.

Looking for a smarter pocket watch? It’s time you built one yourself. And speaking of pocket sundials…

Taking A $15 Casio F91W 5,000 Meters Underwater

When considering our favorite spy movies and kin that involve deep-sea diving, we’d generally expect to see some high-end watch that costs thousands of dollars and is specially engineered to withstand the immense pressures kilometers below the ocean’s surface. Yet what about a humble Casio F91W that can be bought for about $15 if it’s the genuine article and not one of the millions of fakes? Over at the Watches of Espionage site they figured that they’d dress up one of these famous watches to give it the best possible shot at surviving the crushing pressures at a depth of 5 km.

The actual modification to the F91W was pretty mild, involving nothing but a ‘hydro-mod’ whereby oil is used to replace the air inside the watch case. Since oil is incompressible, nothing bad should happen to the watch. Theoretically at least. The Watch-Under-Test (WUT) was strapped to a US Navy’s CURV 21 remotely operated vehicle and dunked into the ocean before starting its descend into the inky darkness of the deep sea.

Although only hitting a measly 4,950 m, the watch survived just fine, showing that even if you’re a secret US operative on a deep-dive espionage mission, all you really need is one of these Casio watches.

A light-up clock displays the day of the week.

What Day Is It Again? Check The Clock

If you’re lucky enough to work from home, you’ll soon find that it presents its own set of challenges, mostly related to work/life balance. It can get so bad that you don’t know what day of the week it is. Really. Ask us how we know.

Rather than miss a meeting (or a day off), prolific hacker [Arnov Sharma] created this day of the week clock. It uses a customized LED driver board with seven sets of three LEDs, each driven by a MOSFET. Each MOSFET is controlled by a DFRobot Mini Beetle ESP32-C3. It runs on a 2200 mAh, 3.7 V lithium-ion battery.

While this is mostly PCBs, there are three printed parts that turn it into a displayable object. We really like the look of this clock — it has just the right amount of pizazz to it and reminds us of a and old movie marquee. Be sure to check out the great build instructions.

We love a good clock around here. In case you missed it, here is the latest from [Moritz v. Sivers] that uses a caustic lens to display the time.

Innovative Clock Uses Printed Caustic Lens

Hackers and makers have built just about every kind of clock under the sun. Digital, analog, seven-segment, mechanical seven-segment, binary, ternary, hexadecimal… you name it. It’s been done. You really have to try to find something that shocks us… something we haven’t seen before. [Moritz v. Sivers] has done just that. 

Wild. Just wild.

Meet the Caustic Clock. It’s based on the innovative Hollow Clock from [shiura]. It displays time with an hour hand and a minute hand, and that’s all so conventional. But what really caught our eye was the manner in which its dial works. It uses caustics to display the clock dial on a wall as light shines through it.

If you’ve ever seen sunlight reflect through a glass, or the dancing patterns in an outdoor swimming pool, you’ve seen caustics at play. Caustics are the bright patterns we see projected through a transparent object, and if you shape that object properly, you can control them. In this case, [Moritz] used some GitHub code from [Matt Ferraro] to create a caustic projection clockface, and 3D printed it using an SLA printer.

The rest of the clock is straightforward enough—there’s some WS2812 LEDs involved, an Arduino Nano, and even an RP2040. But the real magic is in the light show and how it’s all achieved. We love learning about optics, and this is a beautiful effect well worth studying yourself.

Continue reading “Innovative Clock Uses Printed Caustic Lens”