Circuit Simulation In Python

Using SPICE to simulate an electrical circuit is a common enough practice in engineering that “SPICEing a circuit” is a perfectly valid phrase in the lexicon. SPICE as a software tool has been around since the 70s, and its open source nature means there are more SPICE tools around now to count. It also means it is straightforward enough to use with other software as well, like integrating LTspice with Python for some interesting signal processing circuit simulation.

[Michael]’s latest project involves simulating filters in LTspice (a SPICE derivative) and then using Python/NumPy to both provide the input signal for the filter and process the output data from it. Basically, it allows you to “plug in” a graphical analog circuit of any design into a Python script and manipulate it easily, in any way needed. SPICE programs aren’t without their clumsiness, and being able to write your own tools for manipulating circuits is a powerful tool.

This project is definitely worth a look if you have any interest in signal processing (digital or analog) or even if you have never heard of SPICE before and want an easier way of simulating a circuit before prototyping one on a breadboard.

Darwin Approves: Berkeley Evolves Analog Design

Digital design is hard. But in the right environment, digital circuits are more forgiving than analog. That 3.3V signal coming out of the chip has to drop a lot along the way to not be a logic level at the destination. If you are trying to push the boundary then digital design has much of analog design, but mostly you get a bit of a pass on many things that plague analog designers. Berkeley’s AI research group has been experimenting with using deep learning to evolve analog IC design.

Analog ICs are plagued with noise sources and often don’t have the margins that digital circuit designers enjoy. According to the post by [Kourosh Hakhamaneshi], designers often build a few blocks and attempt to lay them out in a way that should work and meet other requirements. Then they employ simulation, make changes as required, and simulate again. Accurate simulations can be very time intensive. You can read the actual paper, too, should you want to dig into the details.

Continue reading “Darwin Approves: Berkeley Evolves Analog Design”

Circuit VR: Advanced Falstad Logic With Geniac

I find that if I’m trying to make a point with a student or a colleague about a circuit, sometimes the Falstad online simulator is worth a few thousand words. You can draw the circuit, play with the values, and even see the current flow in an intuitive way as well as make traditional measurements. The simulator not only handles analog but also digital circuits. At first glance, though, the digital functions appear limited, but if you dig deeper, there is a custom logic block that can really help. I dug into this — and into how switches work in the simulator — the other day in response to a Hackaday post. If you use Falstad, read on!

Continue reading “Circuit VR: Advanced Falstad Logic With Geniac”

Apollo Guidance Computer Saved From The Scrap Yard

NASA needed a small and lightweight computer to send humans on their journey to the Moon and back, but computers of the day were made out of discrete components that were heavy, large, complicated, and unreliable. None of which are good qualities for spaceflight. The agency’s decision to ultimately trust the success of the Apollo program on the newly developed integrated circuit was an important milestone in computer history.

Given the enormity of the task at hand and the monumental effort it took, it’s surprising to learn that there aren’t very many left in existence. But perhaps not as surprising as the fact that somebody apparently threw one of them in the trash. A former NASA contractor happened to notice one of these historic Apollo Guidance Computers (AGC) at an electronics recycling facility, and thankfully was able to save it from getting scrapped.

The AGC was actually discovered in 1976, but it was decided to get the computer working again in time for the recent 50th anniversary of the Moon landing. A group of computer scientists in California were able to not only get the computer up and running, but integrate it into a realistic simulator that gives players an authentic look at what it took to land on the Moon in 1969.

Restoring a computer of this age and rarity is no easy feat. There aren’t exactly spare parts floating around for it, and the team had to go to great effort to repair some faults on the device. Since we covered the beginning stages of the restoration last year, the entire process has been extensively documented in a series of videos on YouTube. So while it’s unlikely you’ll find an AGC in your local recycling center, at least you’ll know what to do with it if you do.

Continue reading “Apollo Guidance Computer Saved From The Scrap Yard”

Spice With A Sound Card

In years gone by, trying out a new circuit probably would have meant heating up a soldering iron. Solderless breadboards have made that even easier and computer simulation is easier still, but there’s something not quite as satisfying about building a circuit virtually. [Thedeuluiz] has a way to get some of the best of both worlds with the RTSpice project.

The idea is simple in concept, although not as simple in execution. The program does a Spice-like simulation of a circuit and can accept input and produce output from a PC’s sound card. Obviously, that means you can’t simulate RF circuits — at least not at the input and the output. It also means the simulation has to run lightning fast to keep up with the sound card sample rate. According to the author, it works best with modest circuits but exactly how big you can go will depend on your hardware.

Continue reading “Spice With A Sound Card”

An Epic Mech Cockpit Build For Steel Battalion

Steel Battalion was released for the Xbox in 2002, and remains one of the most hardcore mech simulators of all time. It became legendary for its huge twin-stick controller covered in buttons, and for deleting your save game if you failed to eject in time. It took giant robot gaming to a new level, but fundamentally, you were still playing in front of a TV at home. Things really got serious in 2015, with the completion of the Big Steel Battalion Box – the battlemech cockpit of your dreams.

Coaching the player is a key part of BSBB gameplay, with a manual created specifically for this purpose.

If you’re thinking this is just a television in a dark room with some stickers, you’d be very wrong. The Imgur thread covers the build process, and it’s one heck of a ride. Things started with a custom cabinet being built, intentionally sized to induce claustrophobia. There’s a swivelling seat with a 4-point harness, and a hatch to seal the player inside. During initial testing of the box to determine how dark it was, one of the makers was trapped inside and had to call for help. That should highlight how serious the build really is.

The controller was modified and hooked up to custom electronics to add realistic effects. Get hit? Feel the seat rumble thanks to motors and a subwoofer in the base. Mech terminally damaged? The entire cockpit is bathed in flashing red light. There’s even smoke effects rigged up to make things even more stressful during battle.

The entire setup is connected to the outside world, where a coach can view the action inside through a video feed from the Xbox and several internal cameras. A basic manual is provided to help the coach keep the player alive during their first moments of combat. This is courtesy of a custom intercom setup, built using surplus Chinese aviation headsets. There’s even a red telephone to give that authentic military feel.

It’s a build that covers just about every detail you could think of. If you’re keen to try it out, it’s on permanent loan to The Museum of Art And Digital Entertainment in Oakland, California. It recalls memories of a similar build created to play Artemis. Video after the break.

Continue reading “An Epic Mech Cockpit Build For Steel Battalion”

Move Over Strandbeest, Here’s Strider!

Father-and-son team [Wade] and [Ben Vagle] have developed and extensively tested two great walker designs: TrotBot and the brand-new Strider. But that’s not enough: their website details all of their hard-earned practical experience in simulating and building these critters, on scales ranging from LEGO-Technic to garage-filling (YouTube, embedded below). Their Walker ABC’s page alone is full of tremendously deep insight into the problem, and is a must-read.

These mechanisms were designed to be simpler than the Jansen linkage and smoother than the Klann. In particular, when they’re not taking a stroll down a beach, walker feet often need to clear obstacles, and the [Vagles’] designs lift the toes higher than other designs while also keeping the center of gravity moving at a constant rate and not requiring the feet to slip or slam into the ground. They do some clever things like adding toes to the bots to even out their gaits, and even provide a simulator in Python and in Scratch that’ll help you improve your own designs.

If you wanted a robot that simply moved, you’d use wheels. We like walkers because they look amazing. When we wrote [Wade] saying that one of Trotbot’s gaits looked animal-like, he pointed out that TrotBot got its working name from a horse-style gait (YouTube). Compared to TrotBot, the Strider family don’t have as much personality, but they run smoother, faster, and stronger. There’s already a 3D-printing-friendly TrotBot model out there. Who’s going to work something up for Strider?

How much do we love mechanical walkers? Enough to post about bicycles made with Jansen linkages, remote-controlled toy Strandbeests both with weaponry and without, power-drill-powered walking scooters, and of course basically anything that Theo Jansen is up to.

If a trip to [Wade] and [Ben]’s website doesn’t get you working on a walker project, physical or virtual, we don’t know what will.

(And from the editorial department of deconfusion: the image in the banner is TrotBot, but it was just too cool to not use.)

Continue reading “Move Over Strandbeest, Here’s Strider!”