Wacky Science: Using Mayonnaise To Study Rayleigh-Taylor Instability

Sometimes a paper in a scientific journal pops up that makes you do a triple-take, case in point being a recent paper by [Aren Boyaci] and [Arindam Banerjee] in Physical Review E titled “Transition to plastic regime for Rayleigh-Taylor instability in soft solids”. The title doesn’t quite do their methodology justice — as the paper describes zipping a container filled with mayonnaise along a figure-eight track to look at the surface transitions. With the paper paywalled and no preprint available, we have to mostly rely the Lehigh University press releases pertaining to the original 2019 paper and this follow-up 2024 one.

Rayleigh-Taylor instability (RTI) is an instability of an interface between two fluids of different densities when the less dense fluid acts up on the more dense fluid. An example of this is water suspended above oil, as well as the expanding mushroom cloud during a explosion or eruption. It also plays a major role in plasma physics, especially as it pertains to nuclear fusion. In the case of inertial confinement fusion (ICF) the rapidly laser-heated pellet of deuterium-tritium fuel will expand, with the boundary interface with the expanding D-T fuel subject to RTI, negatively affecting the ignition efficiency and fusion rate. A simulation of this can be found in a January 2024 research paper by [Y. Y. Lei] et al.

As a fairly chaotic process, RTI is hard to simulate, making a physical model a more ideal research subject. Mayonnaise is definitely among the whackiest ideas here, with other researchers like [Samar Alqatari] et al. as published in Science Advances opting to use a Hele-Shaw cell with dyed glycerol-water mixtures for a less messy and mechanically convoluted experimental contraption.

What’s notable here is that the Lehigh University studies were funded by the Lawrence Livermore National Laboratory (LLNL), which explains the focus on ICF, as the National Ignition Facility (NIF) is based there.

This also makes the breathless hype about ‘mayo enabling fusion power’ somewhat silly, as ICF is even less likely to lead to net power production, far behind even Z-pinch fusion. That said, a better understanding of RTI is always welcome, even if one has to question the practical benefit of studying it in a container of mayonnaise.

NIF’s Laser Fusion Experiment’s Energy Gain Passes Peer Review

Back in December of 2022, a team of researchers at the USA’s National Ignition Facility (NIF) announced that they had exceeded ‘scientific breakeven’ with their laser-based inertial confinement fusion (ICF) system. Their work has now been peer-reviewed and passed scrutiny, confirming that the energy put into fusing a small amount of deuterium-tritium fuel resulted in a net gain (Q) of 1.5.

Laser Bay 2, one of NIF's two laser bays
Laser Bay 2 at the NIF.

The key take-away here of course remains that ICF is not a viable method of producing energy, as we detailed back in 2021 when we covered the 1.3 MJ yield announcement, and again in 2022 following the subject of this now completed peer review.  The sheer amount of energy required to produce the laser energy targeting the fuel capsule and loss therein, as well as the energy required to manufacture each of these fuel capsules (Hohlraum) and sustaining a cycle make it a highly impractical proposition for anything except weapons research.

Despite this, it’s good to see that the NIF’s ICF research is bearing fruit, even if for energy production we should look towards magnetic confinement fusion (MCF), which includes the many tokamaks active today like Japan’s JT-60SE, as well as stellarators like Germany’s Wendelstein 7-X and other efforts to make MCF a major clean-energy source for the future.

Fusion Ignition: What Does The NIF’s 1.3 MJ Yield Mean For Fusion Research?

Earlier this month, Lawrence Livermore National Laboratory (LLNL) announced to the world that they had achieved a record 1.3 MJ yield from a fusion experiment at their National Ignition Facility (NIF). Yet what does this mean, exactly? As their press release notes, the main advancement of these results will go towards the US’s nuclear weapons arsenal.

This pertains specifically to the US’s nuclear fusion weapons, which LLNL along with Los Alamos National Laboratory (LANL) and other facilities are involved in the research and maintenance of. This traces back to the NIF’s roots in the 1990s, when the stockpile stewardship program was set up as an alternative to nuclear weapons testing. Much of this research involves examining how today’s nuclear weapons degrade over time, and ways to modernize the existing arsenal.

In light of this, one may wonder what the impact of these experimental findings from the NIF are beyond merely ensuring that the principle of MAD remains intact. To answer that question, we have to take a look at inertial confinement fusion (ICF), which is the technology at the core of the NIF’s experiments.

Continue reading “Fusion Ignition: What Does The NIF’s 1.3 MJ Yield Mean For Fusion Research?”