Hackaday Prize Entry: OpenBionics

For the last few years now, the 3D printing community has been searching for a groundbreaking application for out little boxes of plastic squirting goodness. On of the most interesting applications the community has stumbled upon is prosthetics.

There have been a lot of people warming up their 3D printers and laser cutters to make prosthetic limbs in recent years. For [OpenBionics]’ entry for The Hackaday Prize, they’re building a prosthetic hand that costs less than $200, weighs less than 300 grams, and can be easily fabricated with 3D printers and laser cutters.

The human hand is the most complex end-effector on the planet, and emulating its range of motion is a difficult task. Still, the [OpenBionics] team is working hard to properly emulate a thumb with three degrees of freedom, putting 144 different grasps on the hand, and making their hand useful with soft fingertips.

Even with all this capability, [OpenBionic]’s robotic hand – motors and all – is about the same size as a normal human hand. That’s incredible, especially when you consider the motors for your hand – muscles – are all in your arm.

The team has put together a video demoing the capabilities of their hand. It’s somewhat remarkable, and able to do everything from lift a coffee cup to holding a pen. You can check that video out below.


The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Entry: OpenBionics”

Casting a hand part 1

[Bil’s] Quest For A Lost Finger: Episode I

A little over a year ago I had a semi-gruesome accident; I stepped off of a ladder and I caught my wedding ring on a nail head. It literally stripped the finger off the bone. This was in spite of me being a safety-freak and having lived a whole second life doing emergency medicine and working in trauma centers and the like. I do have trauma center mentality which means, among other things, that I know you can’t wind the clock back.

hand9A few seconds make an incredible differences in people’s lives. Knowing that it couldn’t be undone, I stayed relaxed and in the end I have to say I had a good time that day as I worked my way through the system (I ended  up in a Philadelphia trauma center with a nearby hand specialist) as I was usually the funniest guy in the room. Truth be told they ask incredibly straight questions like”are you right handed?”  “Well I am NOW”.

So now I could really use a bit of a body hack, having seen the X-Finger on Hackaday long before I knew that I would one day work with them, I was hoping that we could get one to work for me. In speaking with a couple of the mechanical engineers on the Hackaday staff we decided to get [James Hobson] and [Rich Bremer] involved and that the best way to do it was to get a casting of my injured hand out to them.

 

Continue reading “[Bil’s] Quest For A Lost Finger: Episode I”

Artificial Leg Comes With A Normal Gait!

steppingouti

Did you know over 50% of amputees take at least one fall per year due to limited prosthetic mobility? That compares to only about a third of all elderly people over the age of 65!

[Professor Mo Rastgaar] and his PhD student [Evandro Ficanha] set out to fix that problem, and they have come up with a microprocessor controlled prosthetic foot capable of well, to put it bluntly, walking normally.

Working with a scientist from the Mayo Clinic, the pair have created a prosthesis that uses sensors to actively adjust the ankle to create a normal stride. Commercially available prosthetics can do this as well, but can only adjust the foot in an up-down motion, which is fine — if you only plan on walking in a straight line. In addition to having an ankle that can also roll side-to-side and front-to-back based on sensor feedback, they have also moved the control mechanism up the leg using a cable-driven system, which lightens the foot making it easier to use.

We find the test apparatus almost as interesting as the prosthesis itself. The researchers had to come up with a way to measure the performance of the prosthesis when used to walk in an arc. The solution was the turn-table treadmill seen above.

If you have time, check out the video demonstration on the main article’s page which covers the leg and the treadmill build.

[via Reddit]