Do You Trust This AI For Your Surgery?

If you are looking for the perfect instrument to start a biological horror show in our age of AI, you have come to the right place. Researchers at Johns Hopkins University have successfully used AI-guided robotics to perform surgical procedures. So maybe a bit less dystopian, but the possibilities are endless.

Pig parts are used as surrogate human gallbladders to demonstrate cholecystectomies. The skilled surgeon is replaced with a Da Vinci research kit, similarly used in human controlled surgeries.

Researchers used an architecture that uses live imaging and human corrections to input into a high-level language model, which feeds into the controlling low-level model. While there is the option to intervene with human input, the model is trained to and has demonstrated the ability to self-correct. This appears to work fairly well with nothing but minor errors, as shown in an age-restricted YouTube video. (NOTE: SURGICAL IMAGERY WATCH AT YOUR OWN RISK)

Flowchart showing the path of video to LLM to low level model to control robot

It’s noted that the robot performed slower than a traditional surgeon, trading time for precision. As always, when talking about anything medical, it’s not likely we will be seeing it on our own gallbladders anytime soon, but maybe within the next decade. If you want to read more on the specific advancements, check out the paper here.

Medical hacking isn’t always the most appealing for anyone with a weak stomach. For those of us with iron guts make sure to check out this precision tendon tester!

Mousa rotary dial and circuit

Adapting An Old Rotary Dial For Digital Applications

Today in old school nostalgia our tipster [Clint Jay] wrote in to let us know about this rotary dial.

If you’re a young whippersnapper you might never have seen a rotary dial. These things were commonly used on telephones back in the day, and they were notoriously slow to use. The way they work is that they generate a number of pulses corresponding to the number you want to dial in. One pulse for 1, two pulses for 2, and so on, up to nine pulses for 9, then ten pulses for 0.

We see circuits like this here at Hackaday from time to time. In fact, commonly we see them implemented as USB keyboards, such as in Rotary Dial Becomes USB Keyboard and Rotary Dialer Becomes Numeric Keypad.

Continue reading “Adapting An Old Rotary Dial For Digital Applications”

Hacking T Cells To Treat Celiac Disease

As there is no cure for celiac disease, people must stick to a gluten free diet to remain symptom-free. While this has become easier in recent years, scientists have found some promising results in mice for disabling the disease. [via ScienceAlert]

Since celiac is an auto-immune disorder, finding ways to alter the immune response to gluten is one area of investigation to alleviate the symptoms of the disease. Using a so-called “inverse vaccine,” researchers “engineered regulatory T cells (eTregs) modified to orthotopically express T cell receptors specific to gluten peptides could quiet gluten-reactive effector T cells.”

The reason these are called “inverse vaccines” is that, unlike a traditional vaccine that turns up the immune response to a given stimuli, this does the opposite. When the scientists tried the technique with transgenic mice, the mice exhibited resistance to the typical effects of the target gluten antigen and a related type on the digestive system. As with much research, there is still a lot of work to do, including testing resistance to other types of gluten and whether there are still long-term deleterious effects on true celiac digestive systems as the transgenic mice only had HLA-DQ2.5 reactivity.

If this sounds vaguely familiar, we covered “inverse vaccines” in more detail previously.

Full picture of tendon pulling actuator with Arduino elements in the backdrop

Ratcheting Mechanism Gives Tendons A Tug

A common ratchet from your garage may work wonders for tightening hard to reach bolts on whatever everyday projects around the house. However, those over at [Chronova Engineering] had a particularly unusual project where a special ratchet mechanism needed to be developed. And developed it was, an absolutely beautiful machining job is done to create a ratcheting actuator for tendon pulling. Yes, this mechanical steampunk-esk ratchet is meant for yanking on the fleshy strings found in all of us.

The unique mechanism is necessary because of the requirement for bidirectional actuation for bio-mechanics research. Tendons are meant to be pulled and released to measure the movement of the fingers or toes. This is then compared with the distance pulled from the actuator. Hopefully, this method of actuation measurement may help doctors and surgeons treat people with impairments, though in this particular case the “patient” is a chicken’s foot.

Continue reading “Ratcheting Mechanism Gives Tendons A Tug”

A human hand in a latex glove holds a test tube filled with red liquid labeled H5N1. In the background is an out of focus image of a chicken.

Preparing For The Next Pandemic

While the COVID-19 pandemic wasn’t an experience anyone wants to repeat, infections disease experts like [Dr. Pardis Sabeti] are looking at what we can do to prepare for the next one.

While the next pandemic could potentially be anything, there are a few high profile candidates, and bird flu (H5N1) is at the top of the list. With birds all over the world carrying the infection and the prevalence in poultry and now dairy agriculture operations, the possibility for cross-species infection is higher than for most other diseases out there, particularly anything with an up to 60% fatality rate. Only one of the 70 people in the US who have contracted H5N1 recently have died, and exposures have been mostly in dairy and poultry workers. Scientists have yet to determine why cases in the US have been less severe.

To prevent an H5N1 pandemic before it reaches the level of COVID and ensure its reach is limited like earlier bird and swine flu variants, contact tracing of humans and cattle as well as offering existing H5N1 vaccines to vulnerable populations like those poultry and dairy workers would be a good first line of defense. So far, it doesn’t seem transmissible human-to-human, but more and more cases increase the likelihood it could gain this mutation. Keeping current cases from increasing, improving our science outreach, and continuing to fund scientists working on this disease are our best bets to keep it from taking off like a meme stock.

Whatever the next pandemic turns out to be, smartwatches could help flatten the curve and surely hackers will rise to the occasion to fill in the gaps where traditional infrastructure fails again.

Continue reading “Preparing For The Next Pandemic”

Researchers Create A Brain Implant For Near-Real-Time Speech Synthesis

Brain-to-speech interfaces have been promising to help paralyzed individuals communicate for years. Unfortunately, many systems have had significant latency that has left them lacking somewhat in the practicality stakes.

A team of researchers across UC Berkeley and UC San Francisco has been working on the problem and made significant strides forward in capability. A new system developed by the team offers near-real-time speech—capturing brain signals and synthesizing intelligible audio faster than ever before.

Continue reading “Researchers Create A Brain Implant For Near-Real-Time Speech Synthesis”

PCBs of two continuous glucose monitors

Peeking At Poking Health Tech: The G7 And The Libre 3

Continuous glucose meters (CGMs) aren’t just widgets for the wellness crowd. For many, CGMs are real-time feedback machines for the body, offering glucose trendlines that help people rethink how they eat. They allow diabetics to continue their daily life without stabbing their fingertips several times a day, in the most inconvenient places. This video by [Becky Stern] is all about comparing two of the most popular continuous glucose monitors (CGMs): the Abbott Libre 3 and the Dexcom G7.

Both the Libre 3 and the G7 come with spring-loaded applicators and stick to the upper arm. At first glance they seem similar, but the differences run deep. The Libre 3 is the minimalist of both: two plastic discs sandwiching the electronics. The G7, in contrast, features an over-molded shell that suggests a higher production cost, and perhaps, greater robustness. The G7 needs a button push to engage, which users describe as slightly clumsy compared to the Libre’s simpler poke-and-go design. The nuance: G7’s ten-day lifespan means more waste than the fourteen-day Libre, yet the former allows for longer submersion in water, if that’s your passion.

While these devices are primarily intended for people with diabetes, they’ve quietly been adopted by a growing tribe of biohackers and curious minds who are eager to explore their own metabolic quirks. In February, we featured a dissection of the Stelo CGM, cracking open its secrets layer by layer.

Continue reading “Peeking At Poking Health Tech: The G7 And The Libre 3”