The 2023 Hackaday Prize Is Ten, First Challenge Is Educational

If you were anywhere near Hackaday over the weekend, you certainly noticed that we launched the tenth annual Hackaday Prize! In celebration of the milestone, we picked from our favorite challenges of years past and came up with four of our favorite, and even one new one just to keep you on your toes. But the first challenge round is running right now, so get your hacking motors turning.

Re-engineering Education

The first challenge this year showcases educational projects, but broadly construed. Hackers tend to learn best by doing. In the Re-engineering Education challenge, we want you to help give others a chance to learn new skills. Whether you’re building a DIY radio kit, a breadboard-it-yourself computer, or even a demonstrator robot arm, if it helps pass on your hard-earned skills, we want you to enter it here.

It’s fresh on my mind because we were just playing with one this weekend, but [deshipu]’s Fluffbug robot project is a great inspiration for non-traditional education. What better way to discover the intricacies of four-legged walking machine gaits than to have one to play with on your desktop? It’s not going to take over the world, but if you can make it walk, you’ve learned something.

More obviously educational is [Joan Horvath]’s Hacker Calculus, an entry in last year’s Prize. The connections between a function’s height, and the area or volume that it integrates up to can be awfully abstract. Printing out 3D models of the resulting shapes can really help to bring the point home. Or maybe you could really drive home the speed of a comet in its orbit with a physical model? They’ve got you covered, but also ideas for generating your own plastic math toys.

When we think educational computer builds, the amazing reproduction of the WDC-1 “Working Digital Computer” by [Michael Gardi] springs instantly to mind, but perhaps it goes too far down the rabbit hole. Just another rung up on the complexity ladder gets you the Blinking Computer by [Tony Robinson]. Or if you want to figure out how an almost-commercial Z80 computer works from the ground up, consider the Baffa 2.

So what skills do you have that you want to teach other hackers? Can you embody that in a project?

All the Challenges

If you don’t have education in your sights, have a look at the rest of the 2023 Hackaday Prize Challenge rounds. We’re sure you’ll find something you like.

To enter, simply set up a project on Hackaday.io. When the challenge is running, you’ll be able to enter. Full rules over at the 2023 Hackaday Prize landing page.

Challenge Date The Details
Re-engineering Education March 25 – April 25 Educational projects of all stripes welcome. If the goal is to teach, enter it here.
Assistive Tech April 25 – May 30 The Assistive Tech challenge calls for projects that help people with disabilities to learn, work, move around, and simply live their lives to the fullest.
Green Hacks May 30 – July 4 Help reduce our impact on the planet. Do more with less, or help clean up the mess.
Gearing Up July 4 – August 8 Hackers build their own tools. What have you made that makes your making easier? Share it with us.
Wildcard August 8 – September 12 This is where anything goes. The wildcard challenge lets your projects speak for themselves.

Continue reading “The 2023 Hackaday Prize Is Ten, First Challenge Is Educational”

Supercon 2022: Selling Your Company And Not Your Soul

Haddington Dynamics is a particular company. After winning the 2018 Hackaday Prize with an open-source robotic arm, we’ve covered their micro-factories and suction cup end-effectors for making face shields during 2020. They’ve been laser-focused on their mission of creating a fantastic robot arm at a small price tag with open-source software and design. So how does a company with such a hacker ethos get bought by a much larger company, and why? They came to SuperCon 2022 to share their story in a panel discussion.

Haddington Dynamics started with two clever inventions: optical encoders that used analog values instead of digital values and an FPGA that allowed them to poll those encoders and respond rapidly. This allowed them to use cheaper motors and rely on the incredibly sensitive encoders to position them. After the Hackaday prize, they open-sourced the HD version of the robot and released the HDI version. But in 2020, they were bought by a group called Ocado. As to why the somewhat practical but not exciting answer is that they needed money. Employees needed to be paid, and they needed capital to keep the doors open.

So this leads to the next tricky question, how do you sell your company without changing it? The fine folks at Haddington Dynamics point out in their panel discussion that a company is a collection of people. The soul of that company is the collective soul of those people coming together. A company being bought can be akin to stopping working for yourself and going to work for someone else. Working alone, you have values and principles that you can easily stick to. But once you start working for someone else, they will value different things, and while the people that make up the company might not change, the company’s decisions might become unrecognizable.

As the panel points out, looking for a buyer with the same values is critical. Ocado was a great fit as their economic interests and culture matched Haddington’s. However, it’s not all roses, as Ocadao tends to be a very closed-source group. However, Haddington Dynamics still supports its open-source initiatives. It’s a fascinating look into a company’s life cycle and how they navigate the waters of open-source, funding, acquisitions, innovation, and invention. Despite the fairytale-like nature of inventing a revolutionary robot arm in your garage and winning many awards, it turns out there is quite a lot that happens after the happily ever after.

We look forward to seeing more of Haddington Dynamics and where they go next. Video after the break.

Continue reading “Supercon 2022: Selling Your Company And Not Your Soul”

Hackaday Prize 2022: Meet The Winners Of This Year’s Competition

This year, the 2022 Hackaday Prize challenged hackers and makers in the open source community to develop projects which evoked the concepts of Sustainability, Resiliency, and Circularity — ideas which perhaps have never been more important. As humanity works to become better stewards to the only planet they can call home, everything we build (or rebuild) should reflect our desire to preserve our world for future generations.

Today, we’re excited to announce the projects that our panel of expert judges believe best exemplified this year’s theme and took home their share of the $50,000 USD in prize money.

Continue reading “Hackaday Prize 2022: Meet The Winners Of This Year’s Competition”

Hackaday Links Column Banner

Hackaday Links: June 5, 2022

The big news this week comes from the world of medicine, where a woman has received a 3D-printed ear transplant. The 20-year-old woman suffered from microtia, a rare congenital deformity that left her without a pinna, the external structure of the ear. Using scans of the normal ear, doctors were able to make a 3D model of what the missing pinna should look like. Raw material for the print was taken from the vestigial ear of the patient in the form of cartilage cells, or chondrocytes. The ear was printed using a bioprinter, which is a bit like an inkjet printer. The newly printed ear was placed into a protective structure and transplanted. The operation was done in March, and the results are pretty dramatic. With a little squinting, it does look a bit like there are some printing artifacts in the ear, but we’d imagine that’s more from the protective cage that was over the ear as it healed.

Continue reading “Hackaday Links: June 5, 2022”

Hackaday Links Column Banner

Hackaday Links: November 8, 2020

Saturday, November 7, 2020 – NOT PASADENA. Remoticon, the virtual version of the annual Hackaday Superconference forced upon us by 2020, the year that keeps on giving, is in full swing. As I write this, Kipp Bradford is giving one of the two keynote addresses, and last night was the Bring a Hack virtual session, which I was unable to attend but seems to have been very popular, at least from the response to it. In about an hour, I’m going to participate in the SMD Soldering Challenge on the Hackaday writing crew team, and later on, I’ll be emceeing a couple of workshops. And I’ll be doing all of it while sitting in my workshop/office here in North Idaho.

Would I rather be in Pasadena? Yeah, probably — last year, Supercon was a great experience, and it would have been fun to get together again and see everyone. But here we are, and I think we’ve all got to tip our hacker hats to the Remoticon organizers, for figuring out how to translate the in-person conference experience to the virtual space as well as they have.

The impact of going to a museum and standing in the presence of a piece of art or a historic artifact is hard to overstate. I once went to an exhibit of artifacts from Pompeii, and was absolutely floored to gaze upon a 2,000-year-old loaf of bread that was preserved by the volcanic eruption of 79 AD. But not everyone can get to see such treasures, which is why Scan the World was started. The project aims to collect 3D scans of all kinds of art and artifacts so that people can potentially print them for study. Their collection is huge and seems to concentrate on classic sculptures — Michelangelo’s David is there, as are the Venus de Milo, the Pieta, and Rodin’s Thinker. But there are examples from architecture, anatomy, and history. The collection seems worth browsing through and worth contributing to if you’re so inclined.

For all the turmoil COVID-19 has caused, it has opened up some interesting educational opportunities that probably wouldn’t ever have been available in the Before Time. One such opportunity is an undergraduate-level course in radio communications being offered on the SDRPlay YouTube channel. The content was created in partnership with the Sapienza University of Rome. It’s not entirely clear who this course is open to, but the course was originally designed for third-year undergrads, and the SDRPlay Educators Program is open to anyone in academia, so we’d imagine you’d need some kind of academic affiliation to qualify. The best bet might be to check out the intro video on the SDRPlay Educator channel and plan to attend the webinar scheduled for November 19 at 1300 UTC. You could also plan to drop into the Learning SDR and DSP Hack Chat on Wednesday at noon Pacific, too — that’s open to everyone, just like every Hack Chat is.

And finally, as if bald men didn’t suffer enough disrespect already, now artificial intelligence is having a go at them. At a recent soccer match in Scotland, an AI-powered automatic camera system consistently interpreted an official’s glabrous pate as the soccer ball. The system is supposed to keep the camera trained on the action by recognizing the ball as it’s being moved around the field. Sadly, the linesman in this game drew the attention of the system quite frequently, causing viewers to miss some of the real action. Not that what officials do during sporting events isn’t important, of course, but it’s generally not what viewers want to see. The company, an outfit called Pixellot, knows about the problem and is working on a solution. Here’s hoping the same problem doesn’t crop up on American football.

The BYTE Is The Grand Prize Winner Of The 2020 Hackaday Prize

The BYTE, an open-source mouth-actuated input device for people with physical challenges has just been named the Grand Prize winner of the 2020 Hackaday Prize. The award for claiming the top place and title of “Best All Around” in this global engineering initiative is $50,000. Five other top winners and four honorable mentions were also named during this evening’s Hackaday Prize Ceremony, held during the Hackaday Remoticon virtual conference.

This year’s Hackaday Prize focused on challenges put forth by four non-profit partners who have first hand knowledge of the problems that need solving as they work to accomplish their missions. These organizations are Conservation X Labs, United Cerebral Palsy Los Angeles, CalEarth, and Field Ready. Join us below for more on the grand prize winner and to see the Best in Category and Honorable Mention winners from each non-profit challenge, as well as the Best Wildcard project.

Over $200,000 in cash prizes have been distributed as part of this year’s initiative where hundreds of hardware hackers, makers, and artists competed to build a better future. Continue reading “The BYTE Is The Grand Prize Winner Of The 2020 Hackaday Prize”

Let’s Take A Closer Look At This Robotic Airship

It’s not a balloon, however shiny its exterior may seem. This miniature indoor robotic airship created by the University of Auckland mechanical engineering research group [New Dexterity] is an asymmetric system experimenting with the possibilities of an open-source helium-based airship.

Why a helium airship, as opposed to a fixed wing aircraft? The group wanted to experiment with the advantages of lighter-than-air (LTA) travel, namely the higher mobility and looser path planning constraints. Furthermore, LTA airships have a less obstructed field of vision and fewer locomotion issues. While unmanned aerial vehicles (UAV) may be capable of hovering in one place, their lift is generated by rotor thrust, which drains their batteries quickly in the order of minutes. LTA airships can hover for longer periods of time.

The design was created for educational and research purposes, focusing on the financial feasibility of manufacturing the platform, the environmental impact of the materials, and the helium loss through the balloon-like envelope. By measuring these parameters, the researchers are able to study the effects of circumstances such as the cost of indoor commercial balloons and the mechanical properties of balloon materials.

The airship gondola was designed and 3D printed in a modular fashion, then attached to the envelope with Velcro. The placement with respect to the horizontal symmetry of the gondola was done for flight stability, with several configurations tested for the side rotor angle.

The group open-sourced their CAD files and ROS interface for controlling the airship. They primarily use off-the-shelf components such as Raspberry Pi boards, propellers, a DC single brushed motor driver carrier, and LiPo batteries for a total cost of $90 for the platform, with an addition $20 for the balloon and initial helium filling. The price is comparable to the cost of indoor blimps like the Blimpduino 2.0.

You can check out the completed airship below, where the team demonstrates its path following capabilities based on a carrot chasing path finding algorithm. And if you’re interested in learning more about the gotchas of building lighter-than-air vehicles, check out [Sophi Kravitz’s] blimp talk from Hackaday Belgrade.

Continue reading “Let’s Take A Closer Look At This Robotic Airship”