This Is Your Last Chance To Enter The Hackaday Prize

For the last seven months, we’ve been running the world’s greatest hardware competition. The Hackaday Prize is the Academy Awards of Open Hardware, and a competition where thousands of hardware hackers compete to build a better future. The results have already been phenomenal, but all good things must come to an end: we’re wrapping up the last challenge in the Hackaday Prize, after which the finalists of the five rounds will move on, with the ultimate winner being announced next month at the Hackaday Superconference.

We’re in the final hours of the Musical Instrument Challenge, where we’re asking everyone to build the next evolution of modern music instrumentation. We’re looking for the next electric guitar, theremin, synthesizer, violin, or an MPC. What we’ve seen so far is, quite simply, amazing. One of the finalists from the five challenges in this year’s Hackaday Prize will win $50,000 USD, but twenty projects from the Musical Instrument Challenge will each win $1000. We’ll be figuring out those winners on Monday, where they’ll move onto the final round, refereed by our fantastic judges.

It’s still not too late to get in on the action in this year’s Musical Instrument Challenge. We’re looking for the best musical projects out there, but time is of the essence. This round closes on October 8th at 07:00 PDT. There’s still time, though, so start your entry now.

Continue reading “This Is Your Last Chance To Enter The Hackaday Prize”

The Leap Motion Makes Robots Bend To Your Will

We just wrapped up the Human Computer Interface challenge in this year’s Hackaday Prize, and this project is pushing boundaries we’ve hardly seen before. [Giovanni Leal] is using a Leap Motion controller to move a robotic arm around in space.

The robot arm in question comes from Owi, and it is by every measure not a good robot arm. It is, however, an excellent toy filled with motors and plastic linkages that serves as a good stand-in for a proper robotic arm.

Control of this toy robot arm is done through a Leap Motion controller. While the Leap Motion is a few years old at this point, it is a very effective way to ‘measure’ the position and rotation of a hand in 3D space. The only thing that’s required is the Leap Motion controller itself and a tabletop.

The end result is a robot that can be controlled by a hand. While this robot arm is really just a toy, it was fun to assemble and a little bit of hardware hacking with an Arduino turned this into a working robot arm controlled by a human. Scale this up, establish an island lair, and you’re on your way to taking over the world.

CNC Mod Pack Hopes To Make Something Useful From A Cheap Machine Tool

It is probable that many of us have noticed a variety of very cheap CNC mills in the pages of Chinese tech websites and been sorely tempted. On paper or as pixels on your screen they look great, but certainly with the more inexpensive models there soon emerges a gap between the promise and the reality.

[Brandon Piner] hopes to address this problem, with his CNC Mod Pack, a series of upgrades to a cheap mill designed to make it into a much more useful tool. In particular he’s created a revised 3D-printed tool holder and a set of end stop switches. The tool holder boasts swappable mounts on a dovetail fitting with versions for both a laser diode and a rotary tool, allowing much better tool positioning. Meanwhile the end stops are a necessary addition that protects both tool and machine from mishaps.

The same arguments play out in the world of small CNC mills as do in that of inexpensive 3D printers, namely that the economy of buying the super-cheap machine that is nominally the same as the expensive one starts to take a knock when you consider the level of work and expense needed to make your purchase usable. But with projects like this one the barrier to achieving a quality result from an unpromising start is lowered, and the enticing prospect is raised of a decent CNC machine for not a lot.

Hexabitz, Modular Electronics Made Easier

Over the years there have been a variety of modular electronic systems allowing the creation of complex circuits by the interconnection of modules containing individual functions. Hexabitz, a selection of interlocking polygonal small PCBs, is just such a system. What can it bring to the table that others haven’t done already?

The problem facing designers of modular electronics is this: all devices have different requirements and interfaces. To allow connection between modules that preserves all these connections requires an ever-increasing complexity in the inter-module connectors, or the application of a little intelligence to the problem. The Hexabitz designers have opted for the latter angle, equipping each module with an STM32 microcontroller that allows it to identify both itself and its function, and to establish a mesh network with other modules in the same connected project. This also gives the system the ability to farm off computing tasks to individual modules rather than relying solely upon a single microcontroller or single-board computer.

An extremely comprehensive array of modules can be had for the system, which lends it some interesting possibilities, however, it suffers from the inherent problem of modular electronic systems, that it is less easy to incorporate non-standard functions. If they can crack a prototyping module coupled with an easy way to tell its microcontroller to identify whatever function is upon it, they might have a winner.

A 3D-Printed Robot Actuator

Somehow, walking robots at our level never really seem to deliver on the promise that should be delivered by all those legs. Articulation using hobby servos is simple enough to achieve, but cumbersome, slow, and not very powerful. [Paul Gould] has a plan to make a better, 3D-printed articulated robot actuator.

His solution is both novel and elegant, a fairly conventional arm geometry that has at its joints a set of brushless motors similar to but a little larger than the kind you might be more familiar with on multirotors, paired with 3D-printed cycloidal gearboxes. Magnetic encoders provide the necessary positional feedback, and the result is a unit that is both compact and powerful.

With such a range of small brushless motor controllers on the market, it’s at first sight unexpected that he’s designed his own controller board. But this gives him complete control over his software, plus the CAN bus that ties everything together. He’s given us a video which we’ve placed below the break, showing the build process, the impressive capabilities of his system, and a selection of builds including a robot dog complete with tail. This is definitely a project to watch.

Continue reading “A 3D-Printed Robot Actuator”

Friday Hack Chat: All About The Hackaday Prize

Right now we’re neck deep in the Hackaday Prize. What’s the Hackaday Prize? It’s the Academy Awards of hardware creation, or at least that’s what we’re calling it until we get a cease and desist from the Academy of Motion Picture Arts and Sciences.

Already we’ve seen over eight hundred entries in the Hackaday Prize, and there are still months to go. We’re already through the Open Hardware Design Challenge, and twenty fantastic projects from that are moving onto the final round. Yesterday, we announced the winners of the Robotics Module challenge, and again we were blown away. These are the greatest bits of hardware anywhere, and we couldn’t have imagined anything more awesome.

For this week’s Hack Chat, we’re going to be talking all about The Hackaday Prize. This is your chance to be a hardware hero and finally get some recognition for what you’ve been working on. Right now, we’re in the Power Harvesting Challenge in this year’s Hackaday Prize, and we want to see what you can come up with that will get energy from solar, thermal, wind, or random electromagnetic energy. This is your time to shine, and we can’t wait to see what you come up with.

Of course, you might have a few questions on what it takes to make a successful Hackaday Prize entry. For this week’s Hack Chat, we’re going to sit down with [Stephen Tranovich], the person coordinating this year’s Prize, to see what makes a successful entry. This is your chance to find out what it takes to become the next great hardware hacker, and it’s all going down this Friday in the Hack Chat.

Some of the things we’ll be talking about in this week’s Hack Chat:

  • What makes a winning entry?
  • How can you get publicity for your project?
  • Want to bounce your project ideas off the community?
  • What’s the story behind the seed funding confusion from this year?

You are, of course, encouraged to add your own questions to the discussion. You can do that by leaving a comment on the Hack Chat Event Page and we’ll put that in the queue for the Hack Chat discussion.join-hack-chat

Our Hack Chats are live community events on the Hack Chat group messaging. This week is just like any other, and we’ll be gathering ’round our video terminals at noon, Pacific, on Friday, June 15th.  Here’s a clock counting down the time until the Hack Chat starts.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on

You don’t have to wait until Friday; join whenever you want and you can see what the community is talking about.

Modular Robotics: When You Want More Robots in Your Robot

While robots have been making our lives easier and our assembly lines more efficient for over half a century now, we haven’t quite cracked a Jetsons-like general purpose robot yet. Sure, Boston Dynamics and MIT have some humanoid robots that are fun to kick and knock over, but they’re far from building a world-ending Terminator automaton.

But not every robot needs to be human-shaped in order to be general purpose. Some of the more interesting designs being researched are modular robots. It’s an approach to robotics which uses smaller units that can combine into assemblies that accomplish a given task.

We’ve been immersing ourselves in topics like this one because right now the Robotics Module Challenge is the current focus of the Hackaday Prize. We’re looking for any modular designs that make it easier to build robots — motor drivers, sensor arrays, limb designs — your imagination is the limit. But self contained robot modules that themselves make up larger robots is a fascinating field that definitely fits in with this challenge. Join me for a look at where modular robots are now, and where we’d like to see them going.

Continue reading “Modular Robotics: When You Want More Robots in Your Robot”