Fixing A Fatal Genetic Defect In Babies With A Bit Of Genetic Modification

Genetic defects are exceedingly common, which is not surprising considering just how many cells make up our bodies, including our reproductive cells. While most of these defects have no or only minor effects, some range from serious to fatal. One of these defects is in the CPS1 gene, with those affected facing a shortened lifespan along with intensive treatments and a liver transplant as the only real solution. This may now be changing, after the first successful genetic treatment of an infant with CPS1 deficiency.

Carbamoyl phosphate synthetase I (CPS1) is an enzyme that is crucial for breaking down the ammonia that is formed when proteins are broken down. If the body doesn’t produce enough of this enzyme in the liver, ammonia will accumulate in the blood, eventually reaching levels where it will affect primarily the nervous system. As an autosomal recessive metabolic disorder it requires both parents to be carriers, with the severity depending on the exact mutation.

In the case of the affected infant, KJ Muldoon, the CPS1 deficiency was severe with only a low-protein diet and ammonia-lowering (nitrogen scavenging) medication keeping the child alive while a search for a donor liver had begun. It is in this context that in a few months time a CRISPR-Cas9 therapy was developed that so far appears to fixing the faulty genes in the liver cells.

Continue reading “Fixing A Fatal Genetic Defect In Babies With A Bit Of Genetic Modification”

The “P Cell” Is Exactly What You Might Suspect

[Josh Starnes] had a dream. A dream of a device that could easily and naturally be activated to generate power in an emergency, or just for the heck of it. That device takes in urea, which is present in urine, and uses it to generate a useful electrical charge. [Josh] has, of course, named this device the P Cell.

An early proof of concept uses urine to create a basic galvanic cell with zinc and copper electrodes, but [Josh] has other ideas for creating a useful amount of electricity with such a readily-available substance. For example, the urea could be used to feed bacteria or micro algae in a more elegantly organized system. Right now the P Cell isn’t much more than a basic design, but the possibilities are more than just high-minded concepts. After all, [Josh] has already prototyped a Hybrid Microbial Fuel Cell which uses a harmonious arrangement of bacteria and phytoplankton to generate power.

[Josh]’s entries were certainly among some of the more intriguing ones we saw in the Power Harvesting Challenge portion of The Hackaday Prize, and we’re delighted that his ideas will be in the running for the Grand Prize of $50,000.