Black Starts: How The Grid Gets Restarted

Gripped as we are at the time of this writing by a historic heatwave, it’s hard for those of us in the western United States to picture a time when cold and ice reigned across the land. But really, it was only about four months back that another bit of freakish weather was visited across most of the country, including places ill-equipped to deal with the consequences. The now-fabled “February Freeze” left millions, mostly in Texas, scrabbling about in the dark and cold as a series of cascading engineering failures took apart their electrical grid, piece by piece, county by county.

The event has been much discussed and dissected, as an event with such far-reaching impact should be. Like much discussion these days, precious little of it is either informed or civil, and that’s not good news for those seeking to understand what happened and how to prevent it from happening again, or at least to mitigate the effects somewhat. Part of that is understandable, given the life-disrupting and often life-threatening situations the disaster forced people to suddenly face. It’s also difficult for people to discuss an event so widespread in its scope and impact — there’s just too much for anyone to wrap their head around.

To make the present discussion a little easier, we’ll be focusing on one aspect of the February grid crash that’s often bandied about but rarely explained: that the Texas grid was mere minutes away from collapsing completely, and that it would have taken weeks or months to restore had it been able to slip away. Is that really possible? Can the power grid just “go away” completely and suddenly? The answer, sadly, is yes, but thankfully a lot of thought has been put into not only preventing it from happening but also how to restart everything if it does happen, by performing what’s known as a “Black Start.”

Continue reading “Black Starts: How The Grid Gets Restarted”

Model Hydroelectric Plant Is An Illuminating Educational Tool

There’s more than one way to light up a strip of LEDs. Have you tried building your own hydroelectric power plant to do it? Well, now you can. Replicating [Matic Markovič]’s entry into the 2020 Hackaday Prize is bound to teach you something, if not many things, about the way hydroelectric power is generated and the way the variables play into it.

In [Matic]’s model, water from an adjustable-height reservoir flows into a 3D-printed Pelton turbine. The water jet hits the turbine’s cupped fins at a 90° angle, causing the assembly to spin around rapidly. This mechanical energy charges a brushless DC motor that’s connected to an Arduino Nano, which rectifies the AC from the generator and uses it to light up an RGB strip like an equalizer display that represents the power being generated.

This is easily one of the coolest educational displays we’ve ever seen. The reservoir can move up and down over a 55 cm (21.6″) range with the flick of a three-way toggle, which makes it easy to see that the higher the reservoir, the more power is generated. [Matic] has the STLs and INOs in the usual places if you want to make your own. Flow past the break for a demonstration, followed by an exploded render that gets put back together by invisible hands.

Your hydroelectric setup doesn’t need to be fancy, it just needs to work. One man’s trash can be another man’s off-grid phone charger.

Continue reading “Model Hydroelectric Plant Is An Illuminating Educational Tool”

Harvesting Energy From Ambient Moisture

Generating electricity out of thin air is the fantasy for our modern technology dependant world, but still falls squarely in the world of science fiction. However, researchers from the University of Massachusetts Amherst claim that they have found a way to do exactly that, using protein nano-wires to produce tiny amounts of electricity from ambient humidity.

The protein nano-wires in question are harvested from the microbe Geobacter sulfurreducens, to create a 7 µm thick film that is placed between two gold electrodes. One electrode completely covers the back of the film, while the front electrode covers only a tiny portion of the surface area. When the film is exposed ambient moisture, researchers measured 0.4 V – 0.6 V produced continuously for more than two months. The current density was about 17 µA/cm². This is only a fraction of the output of a commercial solar panel, but it can be layered with air gaps in between. The electricity is supposedly produced due to a moisture gradient through the thickness of the film. Harvesting energy using ambient humidity is not new, but the improvement in power density on this study is at least two orders of magnitude larger than that of previous studies.

The researches have named the technology Air-Gen and hope to develop it commercially. As we have seen many times before, promising lab results often don’t translate well into real world products, but this technology is definitely interesting.

We’ll continue to see all sorts of weird and wonderful ways to free up electrons, like using sweat, but we’ll have to wait and see what sticks.

Thanks for the tip [William Polo]!

The “P Cell” Is Exactly What You Might Suspect

[Josh Starnes] had a dream. A dream of a device that could easily and naturally be activated to generate power in an emergency, or just for the heck of it. That device takes in urea, which is present in urine, and uses it to generate a useful electrical charge. [Josh] has, of course, named this device the P Cell.

An early proof of concept uses urine to create a basic galvanic cell with zinc and copper electrodes, but [Josh] has other ideas for creating a useful amount of electricity with such a readily-available substance. For example, the urea could be used to feed bacteria or micro algae in a more elegantly organized system. Right now the P Cell isn’t much more than a basic design, but the possibilities are more than just high-minded concepts. After all, [Josh] has already prototyped a Hybrid Microbial Fuel Cell which uses a harmonious arrangement of bacteria and phytoplankton to generate power.

[Josh]’s entries were certainly among some of the more intriguing ones we saw in the Power Harvesting Challenge portion of The Hackaday Prize, and we’re delighted that his ideas will be in the running for the Grand Prize of $50,000.

MIT Extracts Power From Temperature Fluctuations

As a civilization, we are proficient with the “boil water, make steam” method of turning various heat sources into power we feed our infrastructure. Away from that, we can use solar panels. But what if direct sunlight is not available either? A team at MIT demonstrated how to extract power from daily temperature swings.

Running on temperature difference between day and night is arguably a very indirect form of solar energy. It could work in shaded areas where solar panels would not. But lacking a time machine, or an equally improbable portal to the other side of the planet, how did they bring thermal gradient between day and night together?

This team called their invention a “thermal resonator”: an assembly of materials tuned to work over a specific range of time and temperature. When successful, the device output temperature is out-of-phase with its input: cold in one section while the other is hot, and vice versa. Energy can then be harvested from the temperature differential via “conventional thermoelectrics”.

Power output of the initial prototype is modest. Given a 10 degree Celsius daily swing in temperature, it could produce 1.3 milliwatt at maximum potential of 350 millivolt. While the Hackaday coin-cell challenge participants and other pioneers of low-power electronics could probably do something interesting, the rest of us will have to wait for thermal resonator designs to evolve and improve on its way out of the lab.

[via Engadget]

Places To Visit: Electric Mountain

The experience of being a teenager leaves a host of memories, of social awkwardness in the difficult process of not quite being a child any more, of tedious school days, and of team sports seemingly enjoyed only by the few. Wherever in the world you grew up will have lent a particular flavour to your recollections of that period of your life, whether your memories are good or bad.

One surprising common theme in British teenage memories, at least those of a few decades ago, are power stations. In the 1970s and 1980s, the Central Electricity Generating Board had a PR effort that involved bringing parties of teenage school geography students in for a tour of their local electricity plant, so if you talk to a British person of a certain age you’ll probably find they’ve been up close and personal with a coal-fired power station.

The true power station marvel of the age would have been too far away to tour for most kids at the time, though our geography teachers expounded on it at length. Dinorwig pumped-storage power station in Wales was opened in the early 1980s, and is a hydroelectric plant that uses excess grid generating capacity in the middle of the night to pump water into a lake at the top of a mountain, from which it can later be released at very short notice to respond to demand surges in a matter of seconds. The oft-quoted example is that when an episode of Coronation Street draws to a close there are several million British kettles turned on simultaneously, at which point Dinorwig comes online to rapidly make up the resulting shortfall.

Continue reading “Places To Visit: Electric Mountain”

School Kids Build Ontario Power Generation System Model

The STEAMLabs community makerspace teamed up with a grade 6 class from Vocal Music Academy, a public elementary school in downtown Toronto, to create a working model of the Ontario Power System. It pulls XML files and displays the live power generation mix from renewable and other sources on a 3D printed display on RGB LED strips. Arduino coding on a Spark Core provides the brains.

The kids learned HTML, CSS and Javascript to build a web interface to send commands to the Spark and explain how the system works. Their project was accepted as an exhibition at the TIFF DigiPlaySpace. The kids presented their project to adults and other kids at the event. STEAMLabs has also published a free, open source Internet of Things teaching kit to enable other educators to make projects with Internet brains.

STEAMLabs is currently crowd-funding a new makerspace in Toronto. They’re almost there, a few hundred dollars short of their target, with a couple of days to go. Help them help kids and adults make amazing things! When Hackaday visited Toronto recently, [Andy Forest] dropped in to show off this project. Projects like these which let kids become creators of technology, rather than mere consumers, is one of the best ways to get them hooked to hacking from an early age.

Continue reading “School Kids Build Ontario Power Generation System Model”