Movie Encoded in DNA is the First Step Toward Datalogging with Living Cells

While DNA is a reasonably good storage medium, it’s not particularly fast, cheap, or convenient to read and write to.

What if living cells could simplify that by recording useful data into their own DNA for later analysis? At Harvard Medical School, scientists are working towards this goal by using CRISPR to encode and retrieve a short video in bacterial cells.

CRISPR is part of the immune system of many bacteria, and works by storing sequences of viral DNA in a specific location to identify and eliminate viral infections. As a tool for genetic engineering, it’s cheaper and has fewer drawbacks than previous techniques.

Besides generating living rickrolls and DMCA violations, what is this good for? Cheap, self-replicating sensors. [Seth Shipman], part of the team of scientists at Harvard, explains in an interview below a number of possible applications. His focus is engineering cells to act as a noninvasive data acquisition tool to study neurobiology, for example by using engineered neurons to record their developmental history.

It’s possible to see how this technique can be used more broadly and outside an academic context. Presently, biosensors generally use electric or fluorescent transducers to relay a detection event. By recording data over time in the DNA of living cells, biosensors could become much cheaper and contain intrinsic datalogging. Possible applications could include long-term metabolite (e.g. glucose) monitors, chemical detectors, and quality control.

It’s worth noting that this technique is only at the proof of concept stage. Data was recorded and retrieved manually by the scientists into the bacterial genome with 90% accuracy, demonstrating that if cells can be engineered to record data themselves, accuracy and capacity are high enough for practical applications.

That being said, if anyone is working on a MEncoder or ffmpeg command line option for this, let us know in the comments.

Continue reading “Movie Encoded in DNA is the First Step Toward Datalogging with Living Cells”

IndieGoGo Project Offers DNA Editing For The Home

CRISPR is the new darling of the genetics world, because it allows you to easily edit DNA. It is far more effective than previous techniques, being both precise and relatively easy to use. According to this IndieGoGo project, it is coming to your home lab soon. Genetic researchers love Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) because it allows you to very precisely edit a DNA strand. Using a protein called CAS9, CRISPR can find a very specific sequence in a DNA sequence and cut it. It occurs naturally in cells as part of the immune system: by finding and remembering parts of virus DNA, a cell can recognize and attack it when infected. For the genetics researcher, this allows them to insert new DNA sequences at specific points in the genes of any living cell.

Continue reading “IndieGoGo Project Offers DNA Editing For The Home”

How Biohackers are Fighting a Two-front War on Antibiotic Resistance

We humans like to think of ourselves as the pinnacle of evolution on the planet, but that’s just a conceit. It takes humans roughly twenty years to reproduce, whereas some bacteria can make copies of themselves every 20 minutes. Countless generations of bacteria have honed and perfected their genomes into extremely evolved biological machines.

Most bacteria are harmless, and some are quite useful, even tasty – witness the lactofermented pickles and sauerkraut I made this summer. But some bacteria are pathogenic nightmares that have swarmed over the planet and caused untold misery and billions of deaths. For most of human history it has been so – the bugs were winning. Then a bright period dawned in the early 20th century – the Era of Antibiotics. At last we were delivered from the threat of pestilence, never more to suffer from plague and disease like our unfortunate ancestors. Infections were miraculously cured with a simple injection or pill, childhood diseases were no longer reaping their tragic harvest, and soldiers on the battlefield were surviving wounds that would have festered and led to a slow, painful death.

Now it seems like this bright spot of relief from bacterial disease might be drawing to an end. Resistant strains of bacteria are in the news these days, and the rise of superbugs seems inevitable. But is it? Have we run out of tools to fight back? Not quite yet as it turns out. But there’s a lot of work to do to make sure we win this battle.

Continue reading “How Biohackers are Fighting a Two-front War on Antibiotic Resistance”