Moonpig

When Responsible Disclosure Isn’t Enough

Moonpig is a well-known greeting card company in the UK. You can use their services to send personalized greeting cards to your friends and family. [Paul] decided to do some digging around and discovered a few security vulnerabilities between the Moonpig Android app and their API.

First of all, [Paul] noticed that the system was using basic authentication. This is not ideal, but the company was at least using SSL encryption to protect the customer credentials. After decoding the authentication header, [Paul] noticed something strange. The username and password being sent with each request were not his own credentials. His customer ID was there, but the actual credentials were wrong.

[Paul] created a new account and found that the credentials were the same. By modifying the customer ID in the HTTP request of his second account, he was able to trick the website into spitting out all of the saved address information of his first account. This meant that there was essentially no authentication at all. Any user could impersonate another user. Pulling address information may not sound like a big deal, but [Paul] claims that every API request was like this. This meant that you could go as far as placing orders under other customer accounts without their consent.

[Paul] used Moonpig’s API help files to locate more interesting methods. One that stood out to him was the GetCreditCardDetails method. [Paul] gave it a shot, and sure enough the system dumped out credit card details including the last four digits of the card, expiration date, and the name associated with the card. It may not be full card numbers but this is still obviously a pretty big problem that would be fixed immediately… right?

[Paul] disclosed the vulnerability responsibly to Moonpig in August 2013. Moonpig responded by saying the problem was due to legacy code and it would be fixed promptly. A year later, [Paul] followed up with Moonpig. He was told it should be resolved before Christmas. On January 5, 2015, the vulnerability was still not resolved. [Paul] decided that enough was enough, and he might as well just publish his findings online to help press the issue. It seems to have worked. Moonpig has since disabled its API and released a statement via Twitter claiming that, “all password and payment information is and has always been safe”. That’s great and all, but it would mean a bit more if the passwords actually mattered.

Paypal CSRF

Hacking PayPal Accounts With CSRF

The computer security industry has made many positive changes since the early days of computing. One thing that seems to be catching on with bigger tech companies is bug bounty programs. PayPal offers such a program and [Yasser] decided to throw his hat in the ring and see if he could find any juicy vulnerabilities. His curiosity paid off big time.

Paypal is a huge player in the payment processing world, but that doesn’t mean they aren’t without their flaws. Sometimes the bigger the target, the more difficult it is to find problems. [Yasser] wanted to experiment with a cross-site request forgery attack. This type of attack typically requires the attacker to trick the victim into clicking a malicious link. The link would then impersonate the victim and make requests on the victim’s behalf. This is only made possible if the victim is logged into the target website.

PayPal has protection mechanisms in place to prevent this kind of thing, but [Yasser] found a loophole. When a user logs in to make a request, PayPal gives them an authentication token. This token is supposed to be valid for one user and one request only. Through experimentation, [Yasser] discovered a way to obtain a sort of “skeleton key” auth token. The attacker can attempt to initiate a payment transfer without first logging in to any PayPal account. Once the transfer is attempted, PayPal will request the user to authenticate. This process produces an auth token that apparently works for multiple requests from any user. It renders the authentication token almost entirely ineffective.

Once the attacker has a “universal auth token”, he can trick the victim into visiting a malicious web page. If the user is logged into their PayPal account at the time, the attacker’s webpage can use the universal auth token to trick the victim’s computer into making many different PayPal requests. Examples include adding email addresses to the account, changing the answers to security questions, and more. All of this can be done simply by tricking the user into clicking on a single link. Pretty scary.

[Yasser] was responsible with his disclosure, of course. He reported the bug to PayPal and reports that it was fixed promptly. It’s always great to see big companies like PayPal promoting responsible disclosure and rewarding it rather than calling the lawyers. Be sure to catch a video demonstration of the hack below. Continue reading “Hacking PayPal Accounts With CSRF”