Fun with LED matrix and mouse


[Brad] just acquired a 32×32 RGB LED matrix and he jumped right into the deep end with his first project. To try out his skills on the device he used an Arduino to drive a slew of pixels with bouncing-ball physics.

The demo starts off with a hail storm of multi-colored falling pixels. In the center of the storm is the cursor, which he controls with a PS2 mouse. That happens to be a ball mouse which makes sense as we don’t remember having seen any optical mice as of late that weren’t USB. The PS2 protocol is easy to read using a microcontroller; more about that in [Brad's] project write up.

By holding down the left mouse button he can draw persistent pixels on the screen. The falling balls then interact by bouncing off of the obstacles. The image above shows a frame on three sides of the screen which has trapped the pixels near the bottom. He can also erase pixels, which has the effect of draining the trapped balls like a hole in a bucket of water. Neat!

Bouncing ball physics are fun to experiment with. Here’s one being driven by an analog computer.

[Read more...]

Bouncing ball analog computer


[Eric Archer] constructed an analog computer to model the physics of a bouncing ball. The core is a TL074 opamp that does all the integral math. He had no trouble finding descriptions of analog computers, but how to set the initial conditions was rarely covered. The controls include potentiometers to set the initial velocity, force of gravity, and coefficient of restitution (how much energy is lost in the bounce). The output is displayed on an oscilloscope. He mentions that this output could be used in electronic music, citing Aphex Twin’s Bucephalus Bouncing Ball. Watch the video below for a demo of all the features.

[Read more...]