Hackaday Prize Semifinalist: OpenBionics Affordable Prosthetic Hands

The human hand is an amazing machine, and duplicating even a fraction of its abilities in a prosthetic is a daunting task. Flexible anthropomorphic prosthetics can reach tens of thousands of dollars and are beyond the means of many of the people who need them. So imagine the impact a $200USD prosthetic hand could have.

For such a low, low price you might expect a simple hook or pincer grip hand, but the OpenBionics initiative designed their hand from the outset to mimic the human hand as much as possible. The fingers are Plexiglas with silicone knuckles that are flexed by tendon cables running in sheaths and extended by energy stored in elastomeric material running along their dorsal aspects. Each finger can be selectively locked in place using a differential based on the whiffletree mechanism, resulting in 16 combinations of finger positions with only a single motor. Combined with 9 unique thumb positions, 144 unique grasp are possible with the open source hand built from hardware store and 3D printed parts. Stay tuned for a video of the hand in action after the break.

3D printing is beginning to prove it’s the next big thing in prosthetics. Hackers are coming up with all kinds of static artificial hands, from the elegant to super-hero themed. Maybe the mechanism that OpenBionics has come up with will find its way into these hands – after all, it is an open source project.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Semifinalist: OpenBionics Affordable Prosthetic Hands”

THP Semifinalist: Honeybee Hive Monitoring

[Ken] keeps his bees remotely and can’t check on them as often as he might like to. He wanted some way of knowing when they were out of space, because that slows down their nectar collection. He knew he could do this by remotely tracking the weight and internal temperature of the hives.

His first prototype revolved around a postal scale that couldn’t be turned off between readings. This meant that he needed a bigger solar panel and battery than originally intended. For about a week, the hives were sending data to Thingspeak through an Arduino Fio over XBee.

The current iteration measures the load cells with an HX711 24-bit ADC. This sends the scale data to an Apitronics Bee unit, which adds in temperature data from the hives and sends everything to an Apitronics Hive. [Ken] will also stream it to a cloud service so he can monitor them in real-time. [Ken] wants to see as much data as possible and contribute to NASA’s HoneyBeeNet program, so he has a second Bee unit set up to handle a nearby Apitronics weather station.

SpaceWrencherThe project featured in this post is a semifinalist in The Hackaday Prize.

THP Semifinalist: NoteOn Smartpen

There are a ton of apps out there for taking notes and recording ideas, but sometimes the humble pen is best. However, if you have the tendency to lose, crumple, or spill caffeinated beverages on your pen and paper notes, having a digital copy is quite nice.

The NoteOn Smartpen by [Nick] aims to digitize your writing on the fly while behaving like a normal pen. It does this by using the ST LSM9DS0TR: a 9-axis inertial measurement unit (IMU). These inertial measurements are processed by a STM32 Cortex M4F processor and stored on the internal flash memory.

To retrieve your notes, the Nordic nRF8001 Bluetooth Low Energy radio pairs the MCU with a phone or computer. The USB port is only used to charge the device, and the user interface is a single button and LED.

The major hardware challenge of this device is packaging it in something as small as a pen. Impressively, the board is a cheap 2 layer PCB from OSHPark. The assembled device has a 10 mm diameter, which is similar to that of ‘dumb’ pens.

The NoteOn doesn’t require special paper, and relies only on inertial measurements to reconstruct writing. With the hardware working, [Nick] is now tackling the firmware that will make the device usable.

SpaceWrencherThe project featured in this post is a quarterfinalist in The Hackaday Prize.

Goliath And The Rough Road To Space

No one said the road to The Hackaday Prize would be easy. Many of us have been following [Peter McCloud] as he vies for the Hackaday Prize with Goliath – A Gas Powered Quadcopter. [Peter] literally hit a snag on Monday: his own belts.

Peter had hoped to be performing tied down hover tests by Monday afternoon. Weather and a set of fouled spark plugs conspired against him though. After fighting with engine issues for the better part of a day, [Peter’s] 30 horsepower Briggs & Stratton engine finally roared to life. Then all hell broke loose.

[Peter] only let the engine run a couple of seconds before cutting the ignition. In his own words, “Things were running good until the engine was shutoff. At this point one of the belt started losing tension.”

goliath-1While the tight new engine was quickly losing RPM, the propeller and belt system still had quite a bit of inertia. As the video after the break shows, the belts started flapping and caught on the propeller blades. The front right prop tip caught the double-sided toothed belt, pulling it up and over the propeller. The other end of that same belt lives on the right rear prop. It too caught a propeller blade, snapping the composite blade clean off its hub. The bent steel pulley axles are a testament to the forces at work when things went wrong.

[Peter] isn’t giving up though. He has a plan to add belt guides and a one way bearing to the engine’s crankshaft. The one way bearing will allow the rotor system to overspeed the engine when throttle is reduced. The same bearings are commonly used on R/C helicopters to facilitate autorotation landings.

We want to see all 50 Hackaday Prize semifinalists succeed, so if you have any ideas to help with the rebuild, head over to Goliath’s Hackaday.io page and let [Peter] know!

Continue reading “Goliath And The Rough Road To Space”

THP Semifinalist: The Medicycle

Despite a seeming lack of transportation projects for The Hackaday Prize, there are a few that made it through the great culling and into the semifinalist round. [Nick], [XenonJohn], and [DaveW]’s project is the Medicycle. It’s a vehicle that will turn heads for sure, but the guys have better things in mind than looking cool on the road. He thinks this two-tire unicycle will be useful in dispatching EMTs and other first responders, weaving in and out of traffic to get where they’re needed quickly.

First things first. The one-wheeled motorcycle actually works. It’s basically the same as a self-balancing scooter; the rider leans forward to go forward, leans back to break, and the two tires help with steering. It’s all electronic, powered by a 450W motor. It can dash around alleys, parking lots, and even gravel roadways.

The medi~ part of this cycle comes from a mobile triage unit tucked under the nose of the bike. There are sensors for measuring blood pressure and oxygen, heart rate, and ECG. This data is sent to the Medicycle rider via a monocular display tucked into the helmet and relayed via a 3G module to a physician offsite.

Whether the Medicycle will be useful to medics remains to be seen, but the guys have created an interesting means of transportation that is at least as cool as a jet ski. That’s impressive, and the total build cost of this bike itself is pretty low.

Video of the Medicycle in action below.


SpaceWrencherThe project featured in this post is a semifinalist in The Hackaday Prize.
Continue reading “THP Semifinalist: The Medicycle”