Two researchers, a white woman and dark-skinned man look at a large monitor with a crystal structure displayed in red and white blocks.

AI On The Hunt For Better Batteries

While certain dystopian visions of the future have humans power the grid for AIs, Microsoft and Pacific Northwest National Laboratory (PNNL) set a machine learning system on the path of better solid state batteries instead.

Solid state batteries are the current darlings of battery research, promising a step-change in packaging size and safety among other advantages. While they have been working in the lab for some time now, we’re still yet to see any large-scale commercialization that could shake up the consumer electronics and electric vehicle spaces.

With a starting set of 32 million potential inorganic materials, the machine learning algorithm was able to select the 150 most promising candidates for further development in the lab. This smaller subset was then fed through a high-performance computing (HPC) algorithm to winnow the list down to 23. Eliminating previously explored compounds, the scientists were able to develop a promising Li/Na-ion solid state battery electrolyte that could reduce the needed Li in a battery by up to 70%.

For those of us who remember when energy materials research often consisted of digging through dusty old journal papers to find inorganic compounds of interest, this is a particularly exciting advancement. A couple more places technology can help in the sciences are robots doing the work in the lab or on the surgery table.

Continue reading “AI On The Hunt For Better Batteries”

Tesla’s Plug Moves Another Step Closer To Dominance

Charging an EV currently means making sure you find a station with the right plug. SAE International has now published what could be the end to the mishmash of standards in North America with the J3400 North American Charging Standard.

The SAE J3400TM North American Charging Standard (NACS) Electric Vehicle Coupler Technical Information Report (TIR), which just rolls off the tongue, details the standard formerly only available on Tesla vehicles. We previously talked about the avalanche of support from other automakers this year for the connector, and now that the independent SAE standard has come through, the only major holdout is Stellantis.

Among the advantages of the NACS standard over the Combined Charging System (CCS) or CHAdeMO is a smaller number of conductors given the plug’s ability to carry DC or AC over the same wires. Another benefit is the standard using 277 V which means that three separate Level 2 chargers can be placed on a single 3-phase commercial line with no additional step down required. Street parkers can also rejoice, as the standard includes provisions for lampost-based charger installations with a charge receptacle plug instead of the attached cable required by J1772 which leads to maintenance, clutter, and ADA concerns.

Now that J3400/NACS is no longer under the purview of a single company, the Federal Highway Administration has announced that it will be looking into amending the requirements for federal charger installation subsidies. Current rules require CCS plugs be part of the installation to qualify for funds from the Bipartisan Infrastructure Bill.

If you want to see how to spice up charging an EV at home, how about this charging robot or maybe try fast charging an e-bike from an electric car plug?

An image of the inside of a vehicle wheel. An outer ring gear is attached to two articulated sets of three small helical gears attached to a central sun gear. A shaft from the right side enters into the sun gear.

A Revolution In Vehicle Drivetrains?

Power delivery in passenger vehicle drivetrains hasn’t changed much since the introduction of the constant velocity (CV) joint in the 1930s. Most electric vehicles still deliver power via the same system used by internal combustion cars. Hyundai/Kia has now revealed a system they think will provide a new paradigm with their Universal Wheel Drive System (Uni Wheel). [via Electrek]

What appears at first to be a hub motor is in fact a geared wheel that keeps the motor close without the problem of high unsprung weight. Power is fed into a sun gear which can move independently of the wheel allowing the system to maintain a more consistent driveline and avoid power variability over the range of suspension travel like you’d find in a CV joint experiencing high deflection.

We have some concerns about the durability of such a system when compared with the KISS and long development history of CV joints, but we can’t deny that moving the motors of an electric vehicle out to the corners would allow more packaging flexibility for the cargo and passenger areas. We’re also excited to see open source replicas make their way into smaller robotics projects now that the images have been released. If you’ve already made one in CAD, send us a tip at tips@hackaday.com.

Looking for more interesting innovations in electric cars? How about an off-grid camper van? If you think automakers are overcomplicating something that should be simple, read the Minimal Motoring Manifesto.

Continue reading “A Revolution In Vehicle Drivetrains?”

An ebike motor with the controller cover removed. A number of wires and connectors take up most of the space in the cavity.

Open Brain Surgery For EBikes And EScooters

Personal Electric Vehicles (PEVs) all contain the same basic set of parts: a motor, a battery, a motor controller, some sensors, and a display to parse the information. This simplicity allowed [casainho] to develop a custom controller setup for their own PEVs.

Built around the venerable VESC motor controller, [casainho]’s addition is the EBike/EScooter board that interfaces the existing motor of a device to the controller. Their ESP32-powered CircuitPython solution takes the sensor output of a given bike or scooter (throttle, cadence, or torque) and translates it into the inputs the controller uses to set the motor power.

They’ve also designed an ESP32-based display to interface the rest of the system to the user while riding. Since it also runs CircuitPython, it’s easy to reconfigure the functions of the three button device to display whatever you’d like as well as change various drive modes of your system. I know I’d love to see my own ebikes have a different mode for riding on road versus on shared paths since not getting run over by cars and not harassing pedestrians aren’t going to have the same power profile.

If you want to find more ways to join the PEV revolution, check out this wild omni-wheeled bike or this solar car built from two separate e-bikes. If that doesn’t suit your fancy, how about an off-label use for an e-bike battery to power your laptop off grid?

Behold The Mega-Wheelie, A Huge One-Wheeled Electric Skateboard

DIY electric personal vehicles are a field where even hobbyists can meaningfully innovate, and that’s demonstrated by the Mega-Wheelie, a self-balancing one-wheeled skateboard constructed as an experiment in traversing off-road conditions.

[John Dingley] and [Nick Thatcher] have been building and testing self-balancing electric vehicles since 2008, with a beach being a common testing ground. They suspected that a larger wheel was the key to working better on rough ground and dry sand and tested this idea by creating a skateboard with a single wheel. A very big, very wide wheel, in fact.

The Mega-Wheelie houses a 24V LiFePO4 battery pack, 450 W gearmotor with chain and sprocket drive, SyRen motor controller from Dimension Engineering, Arduino microcontroller, and an inertial measurement unit to enable the self-balancing function. Steering is done by leaning, and the handheld controller is just a dead man’s switch that disables the vehicle if the person piloting it lets go.

Design-wise, a device like this has a few challenging constraints. A big wheel is essential for performance but takes up space that could otherwise be used for things like batteries. Also, the platform upon which the pilot stands needs to be as low to the ground as possible for maximum stability. Otherwise, it’s too easy to fall sideways. On the other hand, one must balance this against the need for sufficient ground clearance.

Beaches are rarely covered in perfectly smooth and firm sand, making them a good test area.

In the end, how well did it work? Well enough to warrant a future version, says [John]. We can’t wait to see what that looks like, considering their past 3000 W unicycle’s only limitation was “personal courage” and featured a slick mechanism that shifted the pilot’s weight subtly to aid steering. A video of the Mega-Wheelie (and a more recent unicycle design) is embedded just below the page break.

Continue reading “Behold The Mega-Wheelie, A Huge One-Wheeled Electric Skateboard”

E-Bikes Turned Solar Car

There is something to be said for a vehicle that gains range just by standing outside in the sun. In the video after the break, [Drew Builds Stuff] demonstrates how he turned a pair of bicycles into a solar-powered vehicle.

The inspiration for this build started with a pair of 20″ steel framed fat tire bikes [Drew] picked up in a liquidation sale. He welded up a simple steel chassis, and attached the partial bicycle frame and forks to the chassis, using them as steerable front wheels. A short arm was welded to each of the fork, linking them together with threaded rods and rod ends that connect to centrally mounted handlebars. The rear driving wheels are from a 20″ e-bike conversion kit, with the disk brake assembly from the cannibalized bikes.

The solar part of this build comes in the form of three 175W flexible solar panels mounted on cedar frames, coming in at 10 lbs per mounted panel. [Drew] considered using conventional rigid solar panels, but they would have been 4-6 times heavier. The two panels mounted to the rear of the vehicle are on a hinged frame to allow easy access to the electronics below. Battery storage is made up of two 24V 100Ah batteries wired in series, connected to a 60A solar charge controller and the e-bike motor controllers.

The vehicle has a top speed of about 45km/h and 100km range on batteries alone. It might not be fast or engineered for maximum efficiency, but it looks like a ton of fun and relatively simple to build. As [Drew] says, it’s not a how-to for building a perfect solar-powered vehicle, it’s how he built one.

Continue reading “E-Bikes Turned Solar Car”

Off-Grid EV Charging

There are plenty of reasons to install solar panels on one’s home. Reducing electric bills, reducing carbon footprint, or simply being in a location without electric service are all fairly common. While some of those might be true for [Dominic], he had another motivating factor. He wanted to install a charger for his electric vehicles but upgrading the electric service at his house would have been prohibitively expensive. So rather than dig up a bunch of his neighbors’ gardens to run a new service wire in he built this off-grid setup instead.

Hooking up solar panels to a battery and charge controller is usually not too hard, but getting enough energy to charge an EV out of a system all at once is more challenging. The system is based on several 550W solar modules which all charge a lithium iron phosphate battery. The battery can output 100 A DC at 48 V which gives more than enough power to charge an EV. However there were some problems getting this much power through an inverter. His first choice let out the magic smoke when it was connected, and it wasn’t until he settled on a Growatt inverter capable of outputting 3.5 kW that the system really started to take shape.

All of this is fairly straightforward, but there’s an extra touch here that makes this project noteworthy. [Dominic] wanted to balance incoming power from the photovoltaic system to the current demands from the EVs to put less strain on the battery. An ESP32 was programmed to only send as much power to the EVs as the solar system is producing at any given time, and also includes some extra logic to make sure the battery doesn’t drain itself from the idle power requirements of the inverter. Right now the system works well but the true test will be when it goes through its first winter. Even though solar panels are more efficient at colder temperatures, if the amount of sunlight or the angle of the panels aren’t ideal there is generally much less production.