UC Davis students build coffee can radar project inspired by MIT


Blinking lights is a lot of fun, but if you’re getting an EE degree the cool stuff becomes a bit more involved. In this case, building your own radar is the thing to do. Here’s a coffee can radar setup being shown off by a group of UC Davis students. Regular readers will recognize the concept as one we looked at in December. The project was inspired by the MIT OpenCourseware project.

One of the cans is being used as a transmitter, the other as the collector. The neat thing about this rig is that the analysis is performed on a PC, with the sound card as the collection device. The video after the break shows off the hardware as well as the results it collected. About a minute and a half into the clip they show a real-time demonstration where a student walks in front of the apparatus while another takes a video of the plot results. As the subject moves away from the receiver the computer graph changes accordingly. The rest of the video covers some operational theory and pcb assembly.

Continue reading “UC Davis students build coffee can radar project inspired by MIT”

The bicycle can tell us how to make it better

Over the years bicycle design has changed. Materials were upgraded as technology advanced, and accumulated knowledge helped bicycle builders make improvements along the way. But deep analysis with the intent to make meaningful improvements has not been widely embraced. Reasearchers at UC Davis are looking to expand into this frontier by letting the bicycle tell us how it can be improved. This is one of the test bikes they’ve been working on, which is mainly aimed at data harvesting. They’re hoping to find some real improvements based mostly on how the machine can get out of the rider’s way as much as possible. The thought here is that the rider’s body makes up 80-90% of the volume of the vehicle and should be accommodated in every way possible.

Sure, this could be a case of trying to build a better mouse trap. But listening to the discussion in the video after the break really drives home the complex issues of stability and locomotion that go into these seemingly simple vehicles. We’re going to guess the final recommendations will not involve making the bike five times taller.

Continue reading “The bicycle can tell us how to make it better”