Do Bounties Hurt FOSS?

As with many things in life, motivation is everything. This also applies to the development of software, which is a field that has become immensely important over the past decades. Within a commercial context, the motivation  to write software is primarily financial, in that a company’s products are developed by individuals who are being financially compensated for their time. This is often different with Free and Open Source Software (FOSS) projects, where the motivation to develop the software is in many cases derived more out of passion and sometimes a wildly successful hobby rather than any financial incentives.

Yet what if financial incentives are added by those who have a vested interest in seeing certain features added or changed in a FOSS project? While with a commercial project it’s clear (or should be) that the paying customers are the ones whose needs are to be met, with a volunteer-based FOSS project the addition of financial incentives make for a much more fuzzy system. This is where FOSS projects like the Zig programming language have put down their foot, calling FOSS bounties ‘damaging’.

Continue reading “Do Bounties Hurt FOSS?”

Passive Components Get Better

When you want to talk about cool new components, you are probably thinking about chips or, these days, even modules. Passive components like resistors, capacitors, and inductors are a solved problem, right? [Darshill Patel] begs to differ. There is still innovation happening in the passive market, and he highlights some of the recent advances.

There are thick-film resistors that don’t need lead, for example. There are also supercapacitor modules with very low ESR. For inductors, at least one manufacturer is moving away from traditional wire loops and using flat wire windings instead. These have a larger cross-section, which reduces unwanted resistance. In addition, it offers more cooling area for heat dissipation.

Of course, passive components have never been as simple as people think. Picking a capacitor’s value is only half the battle. You also need to consider the material to optimize how it works in your design. Wirewound resistors are also inductors unless you get special non-inductive ones that use special wiring techniques to cancel much of the parasitic inductance.

It shows that you can never stop learning about even the simplest components. We are still waiting to figure out what we want to do with a memristor. While tiny surface mount components are good for some assembly reasons, they also have helped reduce unwanted component effects.

Will Nickel-Hydrogen Cells Be The Energy Storage Holy Grail?

You may have heard us here remarking in the past, that if we had a pound, dollar, or Euro for every miracle battery technology story we heard that was going to change the world, we would surely be very wealthy by now. It’s certainly been the case that many such pronouncements refer to promising chemistries that turn out only to be realizable in a lab, but here there’s news of one with a bit of pedigree. Nickel hydrogen batteries have a long history of use in space, and there’s a startup producing them now for use on the ground. Could they deliver the energy storage Holy Grail?

The cathode in a nickel-hydrogen battery is formed by nickel hydroxide, and the anode is formed of hydrogen. If a gas as an anode sounds far fetched, we’re guessing that their structure is similar to the zinc-air battery, in which zinc hydroxide forms in a paste of powdered zinc, and works against oxygen from the air over a porous conductive support. What gives them their exciting potential is their ability to take more than 30,000 charge/discharge cycles, and their relative safety when compared to lithium ion cells. Hydrogen in a pressure vessel might not seem the safest of things to have around, but the chemistry is such that as the pressure increases it reacts to form water. The cost of the whole thing is reduced further as new catalysts have replaced the platinum used by NASA on spacecraft.

We really hope that these batteries will be a success, but as always we’ll wait and see before calling it. They may well be competing by then with the next generation of zinc-air cells.