Chips Remembered: The Scenix/Ubicom/Parallax SX

If you are a bibliophile, going to a used bookstore is a distinctly pleasant experience. Sure, you might discover an old book that you want to read. But at least some of the endorphin rush comes from seeing old friends. Not humans, but books you read years or even decades ago. Most often, you don’t buy the book — you probably have one stashed in a box somewhere. But it is a happy feeling to see an old friend and maybe thumb through it reading a passage or two among shelves of musty books. I wish we had something like that for chips. Outside of a few notable exceptions, chips tend to have a short life span of popularity and then give way to other chips. This is especially true of CPUs. One that I especially miss is the Scenix/Ubicom/Parallax SX chip.

I had a bookstore-like experience with this processor the other day. I produced a few products based around these chips and I have a small stash of them left. I jealously guard the hardware needed to program them “just in case.” Well, naturally, someone needed a few for some reason so I had to dig it all up. Knowing these might be some of the last of the unprogrammed SX chips in the world made me a little nostalgic.

The Story

In the late 1990s, a company called Scenix started producing a microcontroller called the SX in a few footprint sizes. So the SX18 was, for example, an 18-pin part. By 1999, they were already in full swing with the SX18 and SX28 and they introduced the SX52.

Of course, a lot of companies produced microcontrollers. The Scenix offering was a bit special. In those days, the Microchip PIC was the king of the hill. The PIC is an odd beast that evolved from a very limited controller made to be small and inexpensive. Notably, while it could support relatively high clock frequencies — 20 MHz was common — each normal instruction took 4 clock cycles. So when your crystal said 20 MHz, you were running instructions at 5 MHz.

Continue reading “Chips Remembered: The Scenix/Ubicom/Parallax SX”

How Do You Build A Tradition?

I was struck by reading our writeup of the Zenit in Electronics contest – an annual event in the Slovak Republic – that it’s kind of like a decathlon for electronic engineers and/or hardware hackers. It’s a contest, in which students compete presumably initially on a local level, and then up to 32 at the national level. There’s a straight-up knowledge test, a complex problem to solve, and then a practical component where the students must actually fabricate a working device themselves, given a schematic and maybe some help. Reading through the past writeups, you get the feeling that it’s both a showcase for the best of the best, but also an encouragement for those new to the art. It’s full-stack hardware hacking, and it looks like a combination of hard work and a lot of fun.

What’s most amazing is that it’s in its 38th year. Think how much electronics, not to mention geopolitics, has changed in the last 40 years. But yet the Zenit competition still lives on. Since it’s mostly volunteer driven, with strong help from the Slovak electronics industry, it has to be a labor of love. What’s astounding to me is that this love has been kept alive for so long.

I think that part of the secret is that, although it’s a national competition, it’s possible to run it with a small yet dedicated crew. It’s certainly a worthwhile endeavor – I can only imagine how many young students’ lives have been impacted by the exposure to microelectronics hacking through the contest. Indeed, it’s telling that the current chairman of the competition, Daniel Valúch, was a competitor himself back in 1994.

I wonder if the people founding Zenit back in 1984 thought of themselves as creating a perpetual electronic engineering contest, or if they just wanted to try it out and it took on a life of its own? Could you start something like this today?

AI Creates Your Spreadsheets, Sometimes

We’ve been interested in looking at how AI can process things other than silly images. That’s why the “Free AI Bot that Generates the Excel Formula for Any Problem” caught our eye. Based on GPT-3, it supposedly transforms your problem description into a formula suitable for Excel or Google Sheets.

Our first prompt didn’t work out very well. But that was sort of our fault. When they say “Excel formula” they mean that quite literally. So trying to describe the actual result you want in terms of columns or rows seems to be beyond it. Not realizing that, we asked:

If the sum of column H is greater than 50, multiply column A by 0.33

And got:

=IF(SUM(H:H)>50,A*0.33,0)

A Better Try

Which is close, but not really how anyone even mildly proficient with Excel would interpret that request. But that’s not fair. It really needs to be a y=f(x) sort of problem, we suppose.

Continue reading “AI Creates Your Spreadsheets, Sometimes”

Learning By Playing

Summer break has started over here, and my son went off to his first of a few day-camp-like activities last week. It was actually really cool – a workshop held by our local Fablab where they have the kids make a Minecraft building and then get to 3D-print it out. He loves playing and building in Minecraft, so we figured this would be right up his alley.

TinkerCAD model of a Lego Minecraft fox. Kiddo trifecta!

I had naively thought that it would work something like this: the kids build something in Minecraft, and then some software extracts the build and converts it into an STL file. Makes sense, because they already are more-or-less fluent in Minecraft modelling. And as I thought about that, it was a pretty clever idea.

But the truth was even sneakier. They warmed up by making something in Minecraft, then they opened up TinkerCAD, which was new to all of the kids, and built a 3D model there. Then they converted the TinkerCAD models into Minecraft, and played with what they had just built while the 3D printers hummed away.

The kids didn’t even flinch at having to learn a new 3D modelling tool, and the parallels to what they were already comfortable doing in Minecraft were obvious to them. My son came home and told me how much easier it was to do your 3D modelling in “this other Minecraft” – he meant TinkerCAD – because you don’t need to build everything out of single blocks. He thought he was playing games, but he’d secretly used his first CAD tool. Nice trick!

Then I look back and realize how much I must have learned about computers through playing as a kid. Heck, how much I still learn through playing. And of course I’m not alone – that’s one of the things that shines through in a large number of the projects we feature. Hack on and have fun!

Ask Hackaday: What Was Your First Electronics Win?

Back in high school, I joined the stage crew — because of course I did. As student theater groups go, it was pretty active, and with two shows to produce each year, there was always a lot of work to do. I gravitated to the lighting crew, which was a natural fit for me. Besides the electrical part of the job, there was also a lot of monkeying around on scaffolding and rickety ladders to hang the lights, which was great fun for the young and immortal. Plus there was the lighting console to run during performances, a job I eventually took over for my last two years.

Unfortunately, the lighting system was a bit pathetic. The console was mounted in the stage right wings, rather than out in the front of the house where a sensible person would put it. And despite being only about ten years old, the dimmers were already starting to fail. The board had about 20 channels, but you could always count on one of the channels failing, sometimes during a show, requiring some heroics to repatch the lights into one of the dimmers we always left as a spare, just for the purpose.

Continue reading “Ask Hackaday: What Was Your First Electronics Win?”

Demonstrate Danger, Safely

Dan Maloney and I were talking about the chess robot arm that broke a child’s finger during the podcast, and it turns out that we both have extreme respect for robot arms in particular. Dan had a story of a broken encoder wheel that lead to out-of-control behavior that almost hit him, and I won’t even get within striking distance of the things unless I know they’re powered off after seeing what programming errors in a perfectly functioning machine can do to two-by-fours.

This made me think of all the dangerous things I’ve done, but moreover about all the intensely simple precautions you can to render them non-risky, and I think that’s extremely important to talk about. Tops of my list are the aforementioned industrial robot arm and high powered lasers.

Staying safe with an industrial robot arm is as easy as staying out of reach when it’s powered. Our procedure was to draw a line on the floor that traced the arm’s maximum radius, and you stay always outside that line when the light is on. It’s not foolproof, because you could hand the ’bot a golf club or something, but it’s a good minimum precaution. And when you need to get within the line, which you do, you power the thing down. There’s a good reason that many industrial robots live in cages with interlocks on the doors.

Laser safety is similar. You need to know where the beam is going, make sure it’s adequately terminated, and never take one in the eye. This can be as simple as putting the device in a box: laser stays in box, nobody goes blind. If you need to see inside, a webcam is marvelous. But sometimes you need to focus or align the laser, and then you put on the laser safety glasses and think really hard about where the beam is going. And then you close the box again when you’re done.

None of these safety measures are particularly challenging to implement, or conceptually hard: draw a line on the floor, put it in a box. There were a recent series of videos on making Lichtenberg figures safely, and as a general rule with high voltage projects, a great precaution is a two-button deadman’s switch box. This at least ensures that both of your hands are nowhere near the high voltage when it goes on, at the cost of two switches.

If all of the safety precautions are simple once you’ve heard them, they were nothing I would have come up with myself. I learned them all from other hackers. Same goes with the table saw in my workshop, or driving a car even. But since the more hackery endeavors are less common, the “common-sense” safety precautions in oddball fields are simply less commonly known. It’s our jobs as the folks who do know the secrets of safety to share them with others. When you do something dangerous, show off your safety hacks!

Patents And The Missing Museum

A beautiful chapter of the history of invention in the United States ended with a fire in 1880. Well, the fire took place in 1877, but the wheels of government turn slowly. For the first 90 years that patents were granted in the USA, applications were required to be accompanied by a working model – to prove that the idea works and rule out “the perpetual motion cranks”.

During this time, the US Patent Office put all of these models on display, or at least as many of them as they could. The idea was that, alongside the printed documents, people would learn from seeing the inventions in the flesh. This tremendous resource got the Patent Office nicknamed the “Temple of Invention”, and rightly so. Many of the crucial innovations of the industrial revolution were there, in miniature. From Samuel Morse’s model telegraph, through Eli Whitney’s cotton gin, to more than a thousand inventions of Thomas Edison’s, working models were to be seen in the flesh, if in the small. We can only imagine how awe-inspiring it would have been to walk through those halls.

Two fires put significant dents in this tremendous collection. First in 1836, in a fire that consumed most of the approximately 10,000 patents that had been issued to that date, models and paper copies alike. Ironically, these included the patent for the first cast-iron fire hydrant. This fire was so devastating that it led to a dramatic patent reform in that same year, and to the building of a new fireproof Patent Office.

And the “new” Patent Office building still stands today, and proudly displayed patent models until the fire that broke out inside the building in 1877. (The contents of the building weren’t fireproof.) In this second fire, brave employees saved many of the works by staying and battling the fire from inside, but the second demoralizing beatdown, and the accelerating number of patent applications, it became obvious that there just wasn’t enough space to store a model of each patentable invention, and the requirement was dropped in 1880.

A small portion of the remaining patent models were put on display in one wing of the National Portrait Gallery, housed in the Patent Office building, and I had the wonderful opportunity to see it live in the early 2000s. I have no idea if the exhibit is still there – I’m guessing it’s not. The Smithsonian owns the lion’s share of the existing models, and we imagine they are in a warehouse somewhere, like at the end of Raiders of the Lost Ark.

A shame, because seeing a real 3D model of a thing is different from seeing line drawings. Maybe in the future, 3D CAD drawings will take their place? They’d be a lot easier to save in event of a fire.