Australia Didn’t Invent WiFi, Despite What You’ve Heard

Wireless networking is all-pervasive in our modern lives. Wi-Fi technology lives in our smartphones, our laptops, and even our watches. Internet is available to be plucked out of the air in virtually every home across the country. Wi-Fi has been one of the grand computing revolutions of the past few decades.

It might surprise you to know that Australia proudly claims the invention of Wi-Fi as its own. It had good reason to, as well— given the money that would surely be due to the creators of the technology. However, dig deeper, and you’ll find things are altogether more complex.

Continue reading “Australia Didn’t Invent WiFi, Despite What You’ve Heard”

I2C For Hackers: The Basics

You only really need two data wires to transfer a ton of data. Standards like UART, USB2, I2C, SPI, PS/2, CAN, RS232, SWD (an interface to program MCUs), RS485, DMX, and many others, all are a testament to that. In particular, I2C is such a powerful standard, it’s nigh omnipresent – if you were to somehow develop an allergy to I2C, you would die.

Chances are, whatever device you’re using right now, there’s multiple I2C buses actively involved in you reading this article. Your phone’s touchscreen is likely to use I2C, so is your laptop touchpad, most display standards use I2C, and power management chips are connected over I2C more often than not, so you’re covered even if you’re reading this on a Raspberry Pi! Basically everything “smart” has an I2C port, and if it doesn’t, you can likely imitate it with just two GPIOs.

If you’re building a cool board with a MCU, you should likely plan for having an I2C interface exposed. With it, you can add an LCD screen with a respectable resolution or a LED matrix, or a GPS module, a full-sized keyboard or a touchpad, a gesture sensor, or a 9 degree of freedom IMU – Inertial Measurement Unit, like a accelerometer+compass+gyroscope combination. A small I2C chip can help you get more GPIOs for your MCU or CPU, or a multi-channel motor driver, or a thermal camera, or a heap of flash memory; if you’re adding some sort of cool chip onto your board, it likely has an I2C interface to let you fine-tune its fancy bits.

As usual, you might have heard of I2C, and we sure keep talking about it on Hackaday! There’s a good few long-form articles about it too, both general summaries and cool tech highlights; this article is here to fill into some gaps and make implicit knowledge explicit, making sure you’re not missing out on everything that I2C offers and requires you to know!

Continue reading “I2C For Hackers: The Basics”

Radio Apocalypse: HFGCS, The Backup Plan For Doomsday

To the extent that you have an opinion on something like high-frequency (HF) radio, you probably associate it with amateur radio operators, hunched over their gear late at night as they try to make contact with a random stranger across the globe to talk about the fact that they’re both doing the same thing at the same time. In a world where you can reach out to almost anyone else in an instant using flashy apps on the Internet, HF radio’s reputation as somewhat old and fuddy is well-earned.

Like the general population, modern militaries have largely switched to digital networks and satellite links, using them to coordinate and command their strategic forces on a global level. But while military nets are designed to be resilient to attack, there’s only so much damage they can absorb before becoming degraded to the point of uselessness. A backup plan makes good military sense, and the properties of radio waves between 3 MHz and 30 MHz, especially the ability to bounce off the ionosphere, make HF radio a perfect fit.

The United States Strategic Forces Command, essentially the people who “push the button” that starts a Very Bad Day™, built their backup plan around the unique properties of HF radio. Its current incarnation is called the High-Frequency Global Communications System, or HFGCS. As the hams like to say, “When all else fails, there’s radio,” and HFGCS takes advantage of that to make sure the end of the world can be conducted in an orderly fashion.

Continue reading “Radio Apocalypse: HFGCS, The Backup Plan For Doomsday”

Polaroid In An Instant

Edwin Land, were he alive, would hate this post. He wanted to be known for this scientific work and not for his personal life. In fact, upon his death, he ordered the destruction of all his personal papers. However, Land was, by our definition, a hacker, and while you probably correctly associate him with the Polaroid camera, that turns out to be only part of the story.

Land in 1977

It was obvious that Land was intelligent and inquisitive from an early age. At six, he blew all the fuses in the house. He was known for taking apart clocks and appliances. When his father forbade him from tearing apart a phonograph, he reportedly replied that nothing would deter him from conducting an experiment. We imagine many Hackaday readers have similar childhood stories.

Optics

He was interested in optics, and at around age 13, he became interested in using polarized light to reduce headlight glare. The problem was that one of the best polarizing crystals known — herapathite — was difficult to create in a large size. Herapathite is a crystalline form of iodoquinine sulfate studied in the 1800s by William Herapath, who was unable to grow large sizes of the crystal. Interestingly, one of Herapath’s students noticed the crystals formed when adding iodine to urine from dogs that were given quinine.

Land spent a year at Harvard studying physics, but he left and moved to New York. He continued trying to develop a way to make large, practical, light-polarizing crystals. At night, he would sneak into labs at Columbia University to conduct experiments.

Continue reading “Polaroid In An Instant”

Undersea Cable Repair

The bottom of the sea is a mysterious and inaccessible place, and anything unfortunate enough to slip beneath the waves and into the briny depths might as well be on the Moon. But the bottom of the sea really isn’t all that far away. The average depth of the ocean is only about 3,600 meters, and even at its deepest, the bottom is only about 10 kilometers away, a distance almost anyone could walk in a couple of hours.

Of course, the problem is that the walk would be straight down into one of the most inhospitable environments our planet has to offer. Despite its harshness, that environment is home to hundreds of undersea cables, all of which are subject to wear and tear through accidents and natural causes. Fixing broken undersea cables quickly and efficiently is a highly specialized field, one that takes a lot of interesting engineering and some clever hacks to pull off.

Continue reading “Undersea Cable Repair”

End Of An Era: Sony Cuts Production Of Writable Optical Media

The 1990s saw a revolution occur, launched by the CD burner. As prices of writeable media and drives dropped, consumers rushed to duplicate games, create their own mix CDs, and backup their data on optical disc. It was a halcyon time.

Fast forward to today, and we’re very much on downward curve when it comes to optical media use. Amidst ever-declining consumer interest, Sony has announced it will cut production of writeable optical media. Let’s examine what’s going on, and explore the near future for writable optical discs.

Continue reading “End Of An Era: Sony Cuts Production Of Writable Optical Media”

The Rise Of The Disappearing Polymorphs

Science and engineering usually create consistent results. Generally, when you figure out how to make something, you can repeat that at will to make more of something. But what if, one day, you ran the same process, and got different results? You double-checked, and triple-checked, and you kept ending up with a different end product instead?

Perhaps it wasn’t the process that changed, but the environment? Or physics itself? Enter the scary world of disappearing polymorphs.

Continue reading “The Rise Of The Disappearing Polymorphs”