Linux Fu: Kernel Modules Have Privileges

I did something recently I haven’t done in a long time: I recompiled the Linux kernel. There was a time when this was a common occurrence. You might want a feature that the default kernel didn’t support, or you might have an odd piece of hardware. But these days, in almost all the cases where you need something like this, you’ll use loadable kernel modules (LKM) instead. These are modules that the kernel can load and unload at run time, which means you can add that new device or strange file system without having to rebuild or even restart the kernel.

Normally, when you write programs for Linux, they don’t have any special permissions. You typically can’t do direct port I/O, for example, or arbitrarily access memory. The kernel, however, including modules, has no such restriction. That can make debugging modules tricky because you can easily bring the system to its knees. If possible, you might think about developing on a virtual machine until you have what you want. That way, an errant module just brings down your virtual machine. Continue reading “Linux Fu: Kernel Modules Have Privileges”

A Closer Peek At The Frame AR Glasses

The Frame AR glasses by Brilliant Labs, which contain a small display, are an entirely different approach to hacker-accessible and affordable AR glasses. [Karl Guttag] has shared his thoughts and analysis of how the Frame glasses work and are constructed, as usual leveraging his long years of industry experience as he analyzes consumer display devices.

It’s often said that in engineering, everything is a tradeoff. This is especially apparent in products like near-eye displays, and [Karl] discusses the Frame glasses’ tradeoffs while comparing and contrasting them with the choices other designs have made. He delves into the optical architecture, explaining its impact on the user experience and the different challenges of different optical designs.

The Frame glassesĀ are Brilliant Labs’ second product with their first being the Monocle, an unusual and inventive sort of self-contained clip-on unit. Monocle’s hacker-accessible design and documentation really impressed us, and there’s a pretty clear lineage from Monocle to Frame as products. Frame are essentially a pair of glasses that incorporate a Monocle into one of the lenses, aiming to be able to act as a set of AI-empowered prescription glasses that include a small display.

We recommend reading the entire article for a full roundup, but the short version is that it looks like many of Frame’s design choices prioritize a functional device with low cost, low weight, using non-specialized and economical hardware and parts. This brings some disadvantages, such as a visible “eye glow” from the front due to display architecture, a visible seam between optical elements, and limited display brightness due to the optical setup. That being said, they aim to be hacker-accessible and open source, and are reasonably priced at 349 USD. If Monocle intrigued you, Frame seems to have many of the same bones.

Bent Shaft Isn’t A Bad Thing For This Pericyclic Gearbox

With few exceptions, power transmission is a field where wobbling is a bad thing. We generally want everything running straight and true, with gears and wheels perfectly perpendicular to their shafts, with everything moving smoothly and evenly. That’s not always the case, though, as this pericyclic gearbox demonstrates.

Although most of the components in [Retsetman] model gearboxes seem familiar enough — it’s mostly just a collection of bevel gears, like you’d see inside a differential — it’s their arrangement that makes everything work. More specifically, it’s the shaft upon which the bevel gears ride, which has a section that is tilted relative to the axis of the shaft. It’s just a couple of degrees, but that small bit of inclination, called nutation, makes the ring gear riding on it wobble as the shaft rotates, allowing it to mesh with one or more ring gears that are perpendicular to the shaft. This engages a few teeth at a time, transferring torque from one gear to another. It’s easier to visualize than it is to explain, so check out the video below.

Gearboxes like these have a lot of interesting properties, with the main one being gear ratio. [Retsetman] achieved a 400:1 ratio with just 3D printed parts, which of course impose their own limitations. But he was still able to apply some pretty serious torque. The arrangement is not without its drawbacks, of course, with the wobbling bits naturally causing unwelcome vibrations. That can be mitigated to some degree using multiple rotatins elements that offset each other, but that only seems to reduce vibration, not eliminate it.

[Retsetman] is no stranger to interesting gearboxes, of course, with his toothless magnetic gearboxes coming to mind. And this isn’t the only time we’ve seen gearboxes go all wobbly, either.

Continue reading “Bent Shaft Isn’t A Bad Thing For This Pericyclic Gearbox”