Catch the Eclipse with a Wearable Pinhole Camera

You say you didn’t have enough warning to order eclipse glasses, and now they’re too expensive to buy? Or maybe you did order some but they ended up being those retina-combusting knock-offs, and now you’ve got nothing to protect you during the partial phase of Monday’s eclipse? Don’t dump a ton of money on unobtainium glasses — just stick your head in a cardboard box.

You may end up looking like a Box Troll with the aptly named [audreyobscura]’s box on your head, but it really is a safe and effective way of watching the eclipse, or for gazing at our star anytime for that matter. It’s nothing more than a large pinhole camera, with a tiny hole in a scrap of aluminum soda can acting as an aperture. The pinhole in one end of a box casts a perfect image of the sun on a paper screen at the other end of the box. A hole for your head with a proper gasket around your neck — maybe the neck of an old T-shirt would be a bit more comfortable and light tight? — and you’re ready for the show. The bigger the box, the bigger (and dimmer) the image will be, so you’ll want to cruise the local home center for long boxes. Because walking around with a water heater box on your head is totally cool.

Really, though, Hackaday readers can’t say they didn’t know this was coming. We started covering this in January, we’ve got hundreds of eclipse meetups across the country, and we’ve even covered some citizen science opportunities you can partake in on Eclipse Day. If you don’t have your head in a box, that is.

Thanks to [Roger Guess] for the idea on this one.

Wearable Superconductors

What do you do with a discarded bit of superconducting wire? If you’re [Patrick Adair], you turn it into a ring.

Superconducting wire has been around for decades now. Typically it is a thick wire made up of strands of titanium and niobium encased in copper. Used sections of this wire show up on the open market from time to time. [Patrick] got ahold of some, and with his buddies at the waterjet channel, they cut it into slices. It was then over to the lathe to shape the ring.

Once the basic shape was created, [Patrick] placed the ring in ferric chloride solution — yes the same stuff we use to etch PC boards. The ferric chloride etched away just a bit of the copper, making the titanium niobium sections stand out. A trip through the rock tumbler put the final finish on the ring. [Patrick] left the ring in bare metal, though we would probably add an epoxy or similar coating to keep the copper from oxidizing.

[Patrick] is selling these rings on his website, though at $700 each, they’re not cheap. Time to hit up our the auction sites and find some superconducting wire sections of our own!

If you’re looking to make rings out of more accessible objects, check out this ring made from colored pencils, or this one made from phone wire.

Be the Firebender You Want to See in the World

Always wanted to be a citizen of Fire Nation? Here’s one way to ace the citizenship exam: punch-activated flaming kung fu gauntlets of doom.

As with all the many, many, many flamethrower projects we’ve featured before, we’ve got to say this is just as bad an idea as they are and that you should not build any of them. That said, [Sufficiently Advanced]’s wrist-mounted, dual-wielding flamethrowers are pretty cool. Fueled by butane and containing enough of the right parts for even a minimally talented prosecutor to make federal bomb-making charges stick, the gauntlets each have an Arduino and accelerometer to analyze your punches. Wimpy punch, no flame — only awesome kung fu moves are rewarded with a puff of butane ignited by an arc lighter. The video below shows a few close calls that should scare off the hairy-knuckled among us; adding a simple metal heat shield might help mitigate potential singeing.

Firebending gloves not enough to satisfy your inner pyromaniac? We understand completely.

Continue reading “Be the Firebender You Want to See in the World”

Beautiful Rocketeer Jetpack Replica Boasts Impressive Metalwork

Fans of the Rocketeer comic book and movie franchise will be familiar with its hero’s 1930s-styled rocket backpack.  It’s an intricate construction of complex streamlined curves, that has inspired many recreations over the years.

Most Rocketeer jetpacks are made from plastic, foam, and other lightweight materials that will be familiar to cosplayers and costumers. But [David Guyton]’s one is different, he’s made it from sheet steel.

The attraction in his video is not so much the finished pack, though that is an impressive build. Instead it’s the workmanship, nay, the craftsmanship, as he documents every stage of the metalwork involved. The panel beating tools of a sheet metalworker’s trade are surprisingly simple, and it’s tempting to think as you watch: “I could do that!”. But behind the short video clips and apparent speed of the build lies many hours of painstaking work and a huge amount of skill. Some of us will have tried this kind of sheet work, few of us will have taken it to this level.

The video is below the break, it takes us through the constituent parts of the build, including at the end some of the engine details which are cast in resin. Watch it with a sense of awe!

Continue reading “Beautiful Rocketeer Jetpack Replica Boasts Impressive Metalwork”

A Flexible Sensor That Moves With You

If you have a project in mind that requires some sort of gesture input or precise movements, it might become a nettlesome problem to tackle. Fear this obstacle no longer: a team from the Wyss Institute for Biologically Inspired Engineering at Harvard have designed a novel way to make wearable sensors that can stretch and contort with the body’s natural movements.

The way they work is ingenious. Layers of silicone are sandwiched between two lengths of silver-plated conductive fabric forming — by some approximation — a capacitance sensor. While the total surface area doesn’t change when the sensor is stretched — how capacitance sensors normally work — it does bring the two layers of fabric closer together, changing the capacitance of the band in a proportional and measurable way, with the silicone pulling the sensor back into its original shape as tension relaxes. Wires can be attached to each end of the band with adhesive and a square of thermal film, making an ideal sensor to detect the subtlest of muscle movements.

Continue reading “A Flexible Sensor That Moves With You”

Building a DEF CON Badge in Two Weeks

DEF CON is starting right now, and this is the year of #badgelife. For the last few years, independent hardware wizards have been creating and selling their own unofficial badges at DEF CON, but this year it’s off the charts. We’ve already taken a look at Bender Badges, BSD Puffer Fish, and the worst idea for a conference badge ever, and this is only scratching the surface.

This is also a banner year for the Hackaday / Tindie / Supplyframe family at DEF CON. We’re on the lookout for hardware. We’re sponsoring the IoT village, [Jasmine] — the high priestess of Tindie — and I will be spending some time in the Hardware Hacking Village, praising our overlords and saying the phrase, ‘like Etsy, but for electronics’ far too much. We’ll be showing people how to solder, fixing badges, and generally being helpful to the vast unwashed masses.

Obviously, this means we need our own unofficial DEF CON badge. We realized this on July 10th. That gave us barely more than two weeks to come up with an idea for a badge, design one, order all the parts, wait on a PCB order, and finally kit all the badges before lugging them out to DEF CON. Is this even possible? Surprisingly, yes. It’s almost easy, and there are zero excuses for anyone not to develop their own hardware badge for next year’s con.

Continue reading “Building a DEF CON Badge in Two Weeks”