The Long, Slow Demise Of DVD-RAM

While CDs were still fighting for market share against cassettes, and gaming consoles were just starting to switch over to CD from cartridge storage, optical media companies were already thinking ahead. Only two years after the introduction of the original PlayStation, the DVD Forum had introduced the DVD-RAM standard: 2.58 GB per side of a disc in a protective caddy. The killer feature? Essentially unlimited re-writeability. In a DVD drive that supports DVD-RAM, they act more like removable hard drive platters. You can even see hard sectors etched into the media at the time of manufacture, giving DVD-RAM its very recognizable pattern.

At the time, floppy drives were still popular, and CD-ROM drives were increasingly available pre-installed in new computers. Having what amounted to a hard drive platter with a total of 5 GB per disc should have been a killer feature for consumers. Magneto-optical drives were still very expensive, and by 1998 were only 1.3 GB in size. DVD-RAM had the same verify-after-write data integrity feature that magneto-optical drives were known for, but with larger capacity, and after the introduction of 4.7 GB size discs, no caddy was required.

Continue reading “The Long, Slow Demise Of DVD-RAM”

DIY Rabbit R1 Clone Could Be Neat With More Hardware

The Teenage Engineering badging usually appears on some cool gear that almost always costs a great deal of money. One such example is the Rabbit R1, an AI-powered personal assistant that retails for $199. It was also revealed that it’s basically a small device running a simple Android app. That raises the question — could build your own dupe for $20? That’s what [Thomas the Maker] did.

Meet Rappit. It’s basically [Thomas]’s take on an AI friend that doesn’t break the bank. It runs on a Raspberry Pi Zero 2W, which has the benefit of integrated wireless connectivity on board. It’s powered by rechargeable AA batteries or a USB power bank to keep things simple. [Thomas] then wrapped it all up in a cute 3D printed enclosure to give it some charm.

It’s software that makes the Rappit what it is. Rather than including a screen, microphone, or speakers on the device itself, [Thomas] interacts with the Pi-based device via smartphone. It makes it a less convincing dupe of the self-contained Rabbit R1, but the basic concept is the same. [Thomas] can make queries of the Rappit via a simple Android or iOS app he created called “Comfyspace,” and the Rappit responds with the aid of Google’s Gemini AI.

If you’re really trying to duplicate the trend of AI assistants, you really need standalone hardware. To that end, the Rappit design could really benefit from a screen, microphone, speaker, and speech synth. Honestly, though, that would only take you a few hours extra work compared to what [Thomas] has already done here. As it is, [Thomas] could simply throw away the Raspberry Pi and just use the smartphone with Gemini directly, right? But he chose this route of using the smartphone as an interface to keep costs down by minimizing hardware outlay.

If you want a real Rabbit R1, you can order one here. We’ve discussed controversy around the device before, too. Video after the break.

Continue reading “DIY Rabbit R1 Clone Could Be Neat With More Hardware”

RC submarine surfaced in a pool

RC Submarine Build Starts With Plenty Of Research

[Ben]’s a 15-year-old who loves engineering and loves taking on new challenges. He’s made some cool stuff over the years, but the high water mark (no pun intended) has to be this impressively documented remote controlled submarine.

His new build starts off with more research than the actual building. [Ben] spent a ton of time investigating the design of the submarine from its shape, to the propeller system, to the best way to waterproof everything, keeping his sub in tip-top shape. He decides to go with the Russian-style Akula submarine, which is probably the generic look that most of us would think of when we hear the word submarine. He had some interesting thoughts on the propeller system (like the syringe ballast we’ve seen before), and which type of motor to use. In the end, he decided with four pumps that would act essentially as thrusters. fill a chamber with water, allowing the submarine to submerge, or fill with air, making the submarine buoyant, allowing it to resurface.

However, what we found most interesting about his build is how he explains the rationale for all his design decisions and clearly documents his thought process on his project page. We really can’t do [Ben]’s project justice in a short post, so head over to his project page to see it for yourself.

While you’re at it, check out some of these other cool submarine builds that we’ve featured here on Hackaday