RC submarine surfaced in a pool

RC Submarine Build Starts With Plenty Of Research

[Ben]’s a 15-year-old who loves engineering and loves taking on new challenges. He’s made some cool stuff over the years, but the high water mark (no pun intended) has to be this impressively documented remote controlled submarine.

His new build starts off with more research than the actual building. [Ben] spent a ton of time investigating the design of the submarine from its shape, to the propeller system, to the best way to waterproof everything, keeping his sub in tip-top shape. He decides to go with the Russian-style Akula submarine, which is probably the generic look that most of us would think of when we hear the word submarine. He had some interesting thoughts on the propeller system (like the syringe ballast we’ve seen before), and which type of motor to use. In the end, he decided with four pumps that would act essentially as thrusters. fill a chamber with water, allowing the submarine to submerge, or fill with air, making the submarine buoyant, allowing it to resurface.

However, what we found most interesting about his build is how he explains the rationale for all his design decisions and clearly documents his thought process on his project page. We really can’t do [Ben]’s project justice in a short post, so head over to his project page to see it for yourself.

While you’re at it, check out some of these other cool submarine builds that we’ve featured here on Hackaday

Getting An Old HVAC System Online

Standardization might sound boring, but it’s really a great underlying strength of modern society. Everyone agreeing on a way that a certain task should be done saves a lot of time, energy, and money. But it does take a certain amount of consensus-building, and at the time [JC]’s HVAC system was built the manufacturers still hadn’t agreed on a standard control scheme for these machines yet. But with a little ingenuity and an Arduino, the old HVAC system can be given a bit of automatic control.

The original plan for this antiquated system, once off-the-shelf solutions were found to be incompatible, was to build an interface for the remote control. But this was going to be overly invasive and complex. Although the unit doesn’t have a standard remote control system, it does have extensive documentation so [JC] was able to build a relay module for it fairly easily with an Arduino Nano Matter to control everything and provide WiFi functionality. It also reports the current status of the unit and interfaces with the home automation system.

While some sleuthing was still needed to trace down some of the circuitry of the board to make sure everything was wired up properly, this was a much more effective and straightforward (not to mention inexpensive) way of bringing his aging HVAC system into the modern connected world even through its non-standardized protocols. And, although agreeing on standards can sometimes be difficult, they can also be powerful tools once we all agree on them.

RC Batwing Actually Flies

Batman is a compelling superhero for enough reasons that he’s been a cultural force for the better part of a century. His story has complex characters, interesting explorations of morality, iconic villains, and of course a human superhero who gets his powers from ingenuity instead of a fantastical magical force. There are a number features of the Batman universe that don’t translate well to the real world, though, such as a costume that would likely be a hindrance in fights, technology that violates the laws of physics, and a billionaire that cares about regular people, but surprisingly enough his legendary Batwing jet airplane actually seems like it might be able to fly.

While this is admittedly a model plane, it flies surprisingly well for its nontraditional shape. [hotlapkyle] crafted it using mostly 3D printed parts, and although it took a few tries to get it working to his standards, now shoots through the air quite well. It uses an internal electric ducted fan (EDF) to get a high amount of thrust, and has elevons for control. There are two small vertical stabilizer fins which not only complete the look, but allow the Batwing to take to the skies without the need for a flight controller.

Not only is the build process documented in the video linked below with some interesting tips about building RC aircraft in general, but the STL files for this specific build are available for anyone wanting to duplicate the build or expand on it. There are plenty of other interesting 3D-printed models on [hotlapkyle]’s page as well that push the envelope of model aircraft. For some other niche RC aircraft designs we’ve seen in the past be sure to check out this F-35 model that can hover or this tilt-rotor Osprey proof-of-concept.

Continue reading “RC Batwing Actually Flies”

Wireless All The Things!

Neither Tom Nardi nor I are exactly young anymore, and we can both remember a time when joysticks were actually connected with wires to the computer or console, for instance. Back then, even though wireless options were on the market, you’d still want the wired version if it was a reaction-speed game, because wireless links just used to be too slow.

Somehow, in the intervening years, and although we never even really noticed the transition as such, everything has become wireless. And that includes our own hacker projects. Sure, the ESP8266 and other WiFi-capable chips made a big difference, but I still have a soft spot in my heart for the nRF24 chipset, which made at least point-to-point wireless affordable and easy. Others will feel the same about ZigBee, but the point stands: nothing has wires anymore, except to charge back up.

The reason? As this experiment comparing the latency of many different wireless connections bears out, wireless data links have just gotten that good, to the point that the latency in the radio is on par with what you’d get over USB. And the relevant software ecosystems have made it easier to go wireless as well. Except for the extra power requirement, and for cases where you need to move a lot of data, there’s almost no reason that any of your devices need wires anymore.

Are you with us? Will you throw down your chains and go wireless?

Lawny Five Keeps Lawn Mowed, Snow Plowed

Although there’s been considerable excitement over the past half century of a Jetsons-like robotic future, outside of a few niche uses of our day-to-day lives there hasn’t been much in the way of robotic assistants coming to ease our physical household workloads. Sure, robots exist in manufacturing and other industrial settings, but the vast majority of us won’t see a robotic revolution unless we make it for ourselves. To that end, [Jim] has begun construction of a robot that can at least mow his lawn and eventually plow his driveway, among other potential tasks.

The robot, called the Lawny Five, is a tracked vehicle currently under remote control but with a planned autonomous capability. The frame includes a set of caster wheels at the front to take advantage of the differential steering of the tracks, and between everything is where the mower, plow, or other tool can sit. The attachment system is based on a 2″ receiver hitch, allowing the robot to eventually change tools at will while still preserving the usefulness of the tools in their original state. The robotic platform has been tested with the mower on a wet lawn with a 20° slope and showed no signs of struggle (and didn’t damage the grass) so it’s ready to take on more challenging tasks now as well.

With the core of the build out of the way, [Jim] is well on his way to a robotic lawnmower and potentially even an autonomous one, not to mention one with interchangeable tools that he hopes will be put to work in other ways like parking his boat in a small space by his house. For those maintaining a piece of land a little more involved than suburban turfgrass, there are other robotic platforms capable of helping out farmers with things like planting, watering, and weeding.

Continue reading “Lawny Five Keeps Lawn Mowed, Snow Plowed”

Hotshot 3D Printed Hovercraft Is Devastatingly Fast

These days, it’s pretty cheap and easy to build your own little RC hovercraft. [ValRC] demonstrates just that with a hovercraft build that is surprisingly nimble, and fast to boot.

The build started with a design [ValRC] found online. It was simple enough to print and assemble, needing only a pair of a brushless motors, a speed controller, a receiver, and a servo to run the show. The design uses a plastic bag as a skirt, assembled around a 3D printed frame. That proved to be the hardest part of the build, as hot glue didn’t want to play nice with the thin garbage bag.

Even despite the challenges, once assembled, the hovercraft performed well. It readily slid around on a cushion of air, drifting across asphalt with abandon. Upgrades included a better rudder and a skirt made of thicker and more resilient plastic.  The final craft looked mesmerizing as it glided over the smooth concrete of a parking garage with ease.

A hovercraft is, honestly, one of the cooler printable projects for beginners. All you need is a simple design, some powerful motors, and you’re good to go.

Continue reading “Hotshot 3D Printed Hovercraft Is Devastatingly Fast”

Cessna 208B Grand Caravan Flies Under Remote Control

Reliable Robotics has been working on Unmanned Aircraft Systems (UAS) since its founding in 2017, with a number of demonstrations for the FAA so far as it works towards getting the technology licensed. Most recently, it flew an unmanned Cessna 208B Grand Caravan with a pilot in a ground-based control center. This comes a few years after the company flew a Cessna Skyhawk 172 in a similar manner, demonstrating the functionality of its systems in a fairly small airplane.

Because the pilot is not in the cockpit, the aircraft needs to be equipped with not only the remote controls and camera systems, but also with automation to handle taxiing, take-off, and landings, which is demonstrated in the in-cockpit video provided by Reliable Robotics (also embedded below). Another large part of the automation is dealing with loss of remote control signal (LC2L). Initially this system will be offered only as a retrofit kit for the 9-13 seater, single-prop Cessna 208B, but Reliable Robotics claims that the system is aircraft-agnostic.

Reliable Robotics is focused on remotely piloted cargo flights, as it would save pilots from the stress of constantly traveling and hectic schedules. In addition, the potential loss of a cargo plane would be far less dramatic than an aircraft carrying passengers. That doesn’t mean passenger airplanes won’t eventually use a remote control system like this, but the certification process for something on the order of even a twin turbo-prop Dash 8 passenger plane is likely to be much more involved.

Continue reading “Cessna 208B Grand Caravan Flies Under Remote Control”