Forget Propellers, Embrace Tentacle-based Locomotion

Underwater robots face many challenges, not least of which is how to move around. ZodiAq is a prototype underwater soft robot (link is to research paper) that takes an unusual approach to this problem: multiple flexible appendages. The result is a pretty unconventional-looking device that can not only get around effectively, but can do so without disturbing marine life.

ZodiAq sports a soft flexible appendage from each of its twelve faces, but they aren’t articulated like you might think. Despite this, the device can crawl and swim.

With movement inspired by bacterial flagella, ZodiAq moves in an unusual but highly controllable way.

Each soft appendage is connected to a motor, which rotates the attached appendage. This low-frequency but high-torque rotation, combined with the fact that each appendage has a 45° bend to it, has each acting as a rotor. Rotation of the appendages acts on the surrounding fluid, generating thrust. When used together in the right way, these appendages allow the unit to move in a perfectly controllable manner.

This locomotion method is directly inspired by the swimming gait of bacterial flagella, which the paper mentions are regarded as the only example of a biological “wheel”.

How fast can it go? The prototype covers a distance of two body lengths every fifteen seconds. True, it’s no speed demon compared to a propeller, but it doesn’t disturb marine life or environments as it moves around. This method of movement has a lot going for it. It’s adaptable and doesn’t use all twelve appendages at once; so there’s redundancy built in. If some get damaged or go missing, it can still move, just slower.

ZodiAq‘s design strikes us as a very accessible concept, should any aspiring marine robot hackers wish to give it a shot. We’ve seen other highly innovative and beautiful underwater designs as well, like body-length undulating fins and articulated soft arms.

We do notice that since it lacks a “front” — it might be a challenge to decide how to mount something like a camera. If you have any ideas, share them in the comments.

Better Bearings Take The Wobble Out Of Premium Scroll Wheel

Sitting in front of a computer all day isn’t exactly what the firmware between our ears was tuned to do. We’re supposed to be hunting and gathering, not hunting and pecking. So anything that makes the computing experience a little more pleasurable is probably worth the effort, and this premium wireless scroll wheel certainly seems to fit that bill.

If this input device seems familiar, that’s because we featured [Engineer Bo]’s first take on this back at the end of 2024. That version took a lot of work to get right, and while it delivered high-resolution scrolling with a premium look and feel, [Bo] just wasn’t quite satisfied with the results. There were also a few minor quibbles, such as making the power switch a little more user-friendly and optimizing battery life, but the main problem was the one that we admit would have driven us crazy, too: the wobbling scroll wheel.

[Bo]’s first approach to the wobble problem was to fit a larger diameter bearing under the scroll wheel. That worked, but at the expense of eliminating the satisfying fidget-spinner action of the original — not acceptable. Different bearings yielded the same result until [Bo] hit on the perfect solution: a large-diameter ceramic bearing that eliminated the wobble while delivering the tactile flywheel experience.

The larger bearing left more room inside for the redesigned PCB and a lower-profile, machined aluminum wheel. [Bo] also had a polycarbonate wheel made, which looks great as is but would really be cool with internal LEDs — at the cost of battery life, of course. He’s also got plans for a wheel machined from wood, which we’ll eagerly await.

Continue reading “Better Bearings Take The Wobble Out Of Premium Scroll Wheel”