An Interview with Alex Williams, Grand Prize Winner

Alex Williams pulled off an incredible engineering project. He developed an Autonomous Underwater Vehicle (AUV) which uses a buoyancy engine rather than propellers as its propulsion mechanism and made the entire project Open Source and Open Hardware.

The design aims to make extended duration missions a possibility by using very little power to move the vessel. What’s as remarkable as the project itself is that Alex made a goal for himself to document the project to the level that it is fully reproducible. His success in both of these areas is what makes the Open Source Underwater Glider the perfect Grand Prize winner for the 2017 Hackaday Prize.

We got to sit down with Alex the morning after he won to talk about the project and the path he took to get here.

Continue reading “An Interview with Alex Williams, Grand Prize Winner”

Hackaday Prize Entry: Volturnus ROV Rules the River

Water is kind of like information: both are a vital part of life and are found all around us. But not all water or information is healthy. Much of it may look harmless, but is actually polluted. A staggering number of people in the world have no access to fresh, clean water. ROVs can collect samples and detect pollution, but commercial types are way too expensive for the legions of people who need them.

UV light reveals the presence of optical brightening agents in a sample of lake water.

[allai5] wants to be the catalyst for change. She’s the president of Rogue Robotics, a group of high school students throughout central New Jersey who have pooled their talents to design and build a simple, open-source ROV that’s affordable, repeatable, and environmentally friendly. The team uses Volturnus ROV to collect water samples and UV light to determine the presence of a general type of pollutant known as optical brightening agents (OBAs). This is the stuff they add to laundry detergents and copy paper to whiten the fibers’ appearance. By design, OBAs fluoresce brightly under UV light. After soaking a cotton pad in water sample, it’s easy to see if OBAs are present.

At 12″ x 12″ x 18″, Volturnus ROV is compact enough to explore most of the nooks and crannies of any body of water. It moves under the power of three thrusters—500 GPH bilge pump motors driven by a pair of L298N controllers—and is controlled by an Arduino Mega using a wireless joystick. The driver of the ROV navigates the drink through the eyes of a waterproof car back-up camera whose feed is flipped with a Python script.

Volturnus ROV is not a one-stop solution for dealing with marine pollution. The team would like to add filtration in the future and move the electronics to the bottom so it can go faster. Rogue Robotics’ aim has always been to make an ROV that does a few things well. Right now, it’s an excellent jumping-off point for awareness and blueprint for action. Find your inspiration after the break.

Continue reading “Hackaday Prize Entry: Volturnus ROV Rules the River”

Hackaday Prize Entry: Archelon ROV Explores the Ocean

Acendtech Robotics is a 4H robotics club located in Freehold, NJ, and their centerpiece project is the Archelon, an underwater drone they built out of PVC pipes. It’s also a Hackaday Prize entry designed to monitor marine traffic, the seabed, piers, jetties, and other underwater constructions.

The Archelon uses eight thrusters constructed out of bilge pumps that have been hacked to add a propeller, leaving the motor sealed safely inside.

The ROV’s motors are controlled by an Arduino Mega along with two motor driver boards, each board driving two pairs of DC motors. There’s also a robot claw rotated by another modified bilge pump, opened and closed by a waterproof servo. The on-board electronics including a Teensy 3.2 are sealed inside a 1/2″ acrylic tube sealed with rubber o-rings and custom-milled stainless steel endcaps. Connected to the Teensy are the ROV’s cameras as well as an ATTiny88, which in turn control the motors.

Students working with the Archelon learn not only the technical aspects of building a ROV like assembly and programming, but also its mission, learning how to take test samples of agar to study pollutants in the maritime environment.

Telepresence Robot 2000 Leagues Under the Sea

Telepresence robots are now a reality, you can wheel around the office and talk to people, join a meeting, see stuff and bump into your colleagues. But imagine if telepresence were applied to deep sea exploration. Today we can become oceanographers through the telepresence system created by Bob Ballard (known for locating the Titanic, discovered deep sea geothermal vents, and more) and his team at the Inner Space Center. Put on your Submariner wristwatch because its time for all of us to explore the ocean depths via the comfort of our home or office.

Continue reading “Telepresence Robot 2000 Leagues Under the Sea”

Intel’s Vision for Single Board Computers is to Have Better Vision

At the Bay Area Maker Faire last weekend, Intel was showing off a couple of sexy newcomers in the Single Board Computer (SBC) market. It’s easy to get trapped into thinking that SBCs are all about simple boards with a double-digit price tag like the Raspberry Pi. How can you compete with a $35 computer that has a huge market share and a gigantic community? You compete by appealing to a crowd not satisfied with these entry-level SBCs, and for that Intel appears to be targeting a much higher-end audience that needs computer vision along with the speed and horsepower to do something meaningful with it.

I caught up with Intel’s “Maker Czar”, Jay Melican, at Maker Faire Bay Area last weekend. A year ago, it was a Nintendo Power Glove controlled quadcopter that caught my eye. This year I only had eyes for the two new computing modules on offer, the Joule and the Euclid. They both focus on connecting powerful processors to high-resolution cameras and using a full-blown Linux operating system for the image processing. But it feels like the Joule is meant more for your average hardware hacker, and the Euclid for software engineers who are pointing their skills at robots but don’t want to get bogged down in first-principles of hardware. Before you rage about this in the comments, let me explain.

Continue reading “Intel’s Vision for Single Board Computers is to Have Better Vision”

Hackaday Prize Entry: Underwater Glider Offers Low-Power Exploration

[Alex Williams] created his Open Source Underwater Glider project as an entry to The Hackaday Prize, and now it’s one of our twenty finalists. This sweet drone uses motor-actuated syringes to serve as a ballast tank, which helps the glider move forward without the use of traditional propellers.

Unlike most UAVs, which use motors to actively move the craft around, [Alex]’s glider uses the syringes to change the buoyancy of the craft, and it simply glides around on its wings. When the craft starts getting too deep, the syringes push out the water and the glider rises toward the surface until it’s ready for another glide.

This low-power solution allows for long-term science projects and research. In addition to conserving power, the glider’s slow travel does not disturb the water or sea life.

[Alex]’s goal is to make his glider open source and 3D printable, combined with off-the-shelf hardware and ArduSub under the hood.

Continue reading “Hackaday Prize Entry: Underwater Glider Offers Low-Power Exploration”

Highlights From Robotic Shipwreck Exploration

DIY Research Vessel in use, while ROV is busy below. [Source: NYT]
DIY Research Vessel in use, while ROV is busy below. [Source: NYT]
OpenROV shared the results of their June 2016 underwater expedition to locate and robotically explore the wreck of the S.S. Tahoe, currently sitting at a depth of 150m in Lake Tahoe. Back in 1940 the ship was intentionally scuttled in shallow water, but unexpectedly slid to a much deeper depth. OpenROV used a modified version of their new Trident design to dive all the way down to the wreck and take a good look at things, streaming it over the internet in the process.

We previously covered the DIY research vessel that was designed and created as a floating base station for the ROV while it located and explored the wreck, and now the results are in! The video highlights of the expedition are below, as is a video tour of the ROV used and the modifications required to enable it to operate at 150m.

Continue reading “Highlights From Robotic Shipwreck Exploration”