Pwdr, The Open Source Powder Printer

Meet pwdr, the open source 3D printer that is a complete departure from the RepRaps and Makerbots we’ve come to love.

Instead of squirting plastic onto a build surface, pwdr operates just like the very, very expensive powder printers used in industrial settings. Pwdr uses gypsum, ceramics, and concrete for its raw stock and binds these powder granules together with water deposited from an inkjet cartridge.

Inside pwdr there are two bins, one for storing the raw material and another for building the part. The part to be printed is built one layer at a time, just like your regular desktop printer. After each layer is finished, a counter-rotating drum scrapes the raw material over the build area and another layer is printed.

There are a lot of advantages to pwdr versus the melted plastic method of printing used in the Makerbot; because each build is self-supporting, it’s possible to print objects that just couldn’t be made with an extruder-based printer. Pwdr also supports laser sintering, meaning it’s possible for pwdr to make objects out of ABS, Nylon, and even metal.

Right now, pwdr is still in the very early stages of development, but you can build your own powder printer from the files up on Thingiverse. Check out the video of pwdr printing after the break.

Continue reading “Pwdr, The Open Source Powder Printer”

Ask Hackaday: What’s Your Backup Solution?

Here’s some very, very sad news from [Charles] over at The Maker’s Workbench: on July 16th, his house was hit by lightning causing his workshop to catch fire. His family is safe, but unfortunately thousands of dollars in gear has gone up in smoke. [Charles] lost a Reprap, a ton of dev boards, a huge amount of tools including an awesome soldering setup, and his laptop and file server.

Short of taking up residence inside Yucca Mountain, there’s little that can be done to prevent random, disastrous acts of Thor. The only bright side to [Charles]’ ordeal (if there is one) is that most of his file server – including all the code he’s written over the years – was backed up on the cloud.

Hackaday readers aren’t much for marketing buzzwords like ‘the cloud,’ so we’re wondering what your backup solutions are. If the cloud isn’t for you, is a NAS at home a good idea? rsync will do wonders, but even hard drives at an off-site location fail; maybe tape is the best choice. Of course if you have a laser cutter, there’s always the option of cutting patterns of holes in stainless steel plates and preserving your data for thousands of years.

If [Charles]’ story doesn’t inspire you to backup often and preserve your data, consider this: the greek poet [Sophocles] wrote 123 plays, seven of which still survive. Put in perspective, that’s like the only songs in The Beatles’ catalog surviving 2,500 years coming from the Yellow Submarine soundtrack.

Melting Plastic Powder Together, One Layer At A Time

[youtube=http://www.youtube.com/watch?v=vVOtKSKyIvI&fw=470]

Here’s an interesting development in the world of 3D printers: A rapid prototyping machine that melts plastic powder together to create objects with extremely good resolution

The Blueprinter works by drawing a 0.1 mm thick layer of plastic powder over the build platform. After that, a very hot needle-shaped probe melts the plastic together. This process continues at a rate of 10mm an hour on the z axis, and a very precise plastic model eventually appears in the powder.

There is no price ( or solid release date ) for the Blueprinter, but this 3ders.org article from earlier this year tells us the price for the machine will be €9,995, with a material cost of €49 per kg. Pricey, yes, but seeing as how the RepRap community already has the techniques behind melting plastic down pat, it might now be too hard to build your own plastic sintering printer.

If you know of any current projects or builds that are trying to emulate this plastic powder melting technique, drop us a note on the tip line. We’d love to see a version of this printer up and running. Until then, you can check out the render showing a rendered Blueprinter in action, along with a demo of a plastic clip printed on this sintering printer.

Continue reading “Melting Plastic Powder Together, One Layer At A Time”

Picking Handcuffs With Laser Cut Keys

At this year’s HOPE conference, German competitive lockpicker and security researcher [Ray] gave a talk about escaping high security handcuffs that are probably being used by your local police and other LEOs. He’s doing this with 3D printed and laser cut keys because, you know, security through obscurity never works.

Two years ago, [Ray] gave a talk at HOPE on 3D printing Dutch handcuff keys (you can listen to his conference as an .MP3 here). This time around, [Ray] copied the keys of Bonowi and Chubb handcuffs, very popular brands for American police. After obtaining a key from each of the two brands, [Ray] broke out the calipers and micrometer and designed his own versions that can be printed on a RepRap or Makerbot, or just laser cut from a piece of plastic; the perfect material for sneaking one through a metal detector.

The .DXF and .STL files for the handcuff keys will be available on Thingiverse shortly. We’d suggest watching this Thingiverse account (nevermind), as they have the files for [Ray]’s earlier Dutch handcuff key.

RA 3D Printer Controller Board Does Everything, Has Disco Lights

3D printers are getting far, far more complicated than a 4-axis, plastic-squirting CNC machine. These days, you really haven’t earned your geek cred unless you’ve hacked an LCD and SD card interface into your 3D printer, or at least experimented with multiple extruders. There’s a problem with the controller boards everyone is using, though: most boards simply don’t have enough output pins, greatly reducing the number of cool things a 3D printer can do.

Enter RA. It’s a new 3D printer controller board with IO for any imaginable setup. Going down the feature list of RA, we’re wondering why we haven’t seen some of these features before. A 24-pin ATX power header is soldered directly to the board, giving RA users a stupidly easy way to power their printer. Of course there are outputs for LEDs, camera triggers (printer time-lapse movies are really cool), light rings, buzzers, an LCD/rotary encoder/SD card control panel, and support for two heated beds for gigantic printers. If printing in one color isn’t good enough for you, RA has support for three extruders

Compared to other 3D printer boards such as RAMPS or the Sanguinololu, the number of outputs on this board is simply amazing. If you’re planning to build a huge, feature-laden 3D printer, you probably couldn’t do much better than what RA is offering.

CNC Table Saw Jig

table saw jig

[Woodgears.ca] seems to be a wealth of clever hacks, and this CNC box joint jig is no exception.  Although one has to manually move the jig to make the actual cut, it still gives the user a lot of extra functionality. One only has to click the mouse button to advance the workpiece.  One drawback to using a table saw, even with this jig is that some internal parts still may have to be cut. Check out the video after the break to see this device in action, or skip to around 3:08 to see what hand operations still have to be done.

Besides just being a cool build, we loved the box-jointed project enclosure for the electronics. As this was made in 2003, it’s nice to see that the idea of “self-replication” (at least in part) didn’t start with the [Rep-Rap]. The 10 year old (as of 2003) Thinkpad notebook computer running QBasic in DOS is a nice “hacker” touch as is using 100 Watt light bulbs as power resistors. Pretty clever electronics, especially for someone that’s known more for his excellent woodworking skills than his obvious electrical engineering knowledge! Continue reading “CNC Table Saw Jig”

Printing Organs With A 3D Printer

[Jordan Miller], [Christopher Chen], and a whole bunch of other researchers at the department of bioengineering at U Penn have figured out a way to print 3D tissues using a 3D printer. In this case, a RepRap modified to print sugar.

Traditional means of constructing living 3D tissues face a problem – in a living body, there’s a whole bunch of vasculature sending Oxygen and nutrients to the interior cells. In vitro, these nutrients can’t get to the cells in the core of a mass of tissue. [Jordan], [Chris], et al. solved this problem by printing a three-dimensional sugar lattice. After encasing this lattice in a gel embedded with living cells, the sugar can be dissolved and the nutrients pumped through the now hollow capillaries in the gel.

If you have access to Nature, the full text article is available here. There’s also a great video showing off this technique after the break.

Continue reading “Printing Organs With A 3D Printer”