A USB MUXer, For All Your Programming Needs

What if there were something like a KVM switch for your micro programmer, logic analyzer, and other various tools? There was a time when KVM switches (keyboard, video, and mouse, by the way) were metal enclosures surrounding an absurdly complicated rotary switch. This fact has a few applications if you ever want to switch a whole lot of stuff; if you ever need a bazillion-pole, two-way rotary switch, don’t spend your money at Mouser or Digikey, just look at eBay for some really old KVM or parallel port switches. Modern times require modern solutions, so here’s a 16-channel, bi-directional switched bus multiplexer. It connects wires to other wires with USB control, and if you need something like this, you really need something like this.

The SensorDots Port MuxR is a crowdfunding project for a project that began as a programming jig for another project. The MappyDot is a micro LIDAR unit that’s about the size of a postage stamp and has a microcontroller. Obviously, programming those microcontrollers was a pain (and don’t get me started on buying pre-programmed microcontrollers from the manufacturer), but there was a solution: a custom programming rig with dozens of pogo pins that automated the programming of an entire panel of boards. It was a useful tool, and now it’s a good idea for a Kickstarter project.

The Port MuxR takes a set of eight pins, and sends that out to one of eight ports. Alternatively, it can take a set of four pins, and send that to sixteen ports. All of this is controlled via USB, and it works with 0-5V signaling. If you know what this means, you probably have a reason to be interested in it.

Is it a sexy project? No, not at all. It’s an 8-pole, 8-throw rotary switch, controllable over USB. It is interesting, and it’s something a lot of us are going to need eventually.

The Blackest Black, Now in Handy Pocket Size

If you thought “carbon nanotubes” were just some near-future unobtainium used in space elevators, don’t worry, you certainly aren’t alone. In reality, while the technology still has a way to go, carbon nanotube production has already exceeded several thousand tons per year and there are products you can buy today that are using this decidedly futuristic wonder material. Now there’s even one you can put in your pocket.

Created by [Simon], a designer in the UK, this small carbon nanotube array is described as “A simulated black hole” because the surface absorbs 99.9% of the visible light that hits it. Protected by a clear acrylic case, the sample of the material makes a circle that’s so black it gives the impression you’re looking into deep space. Unfortunately, no time-dilating gravitational forces are included at any of level of support in the ongoing Kickstarter campaign; but considering it was 100% funded in just a few hours, it seems like most people are OK with the trade-off.

[Simon] is well aware of the ongoing war between different methods of creating the “Blackest Black”, and he thinks he’s put his money (and by extension, his backer’s) money on the winner. Singularity is using a similar technology to the exclusively-licensed Vantablack, rather than a super-dark paint like “Black 3.0”. In fact he’s so confident that Singularity will appear darker than Black 3.0 that he mentions a head-to-head comparison is currently in the works.

If there’s a downside to the carbon nanotube array used in Singularity, it’s that you can’t actually touch it. [Simon] warns that while the acrylic case is only held together with magnets and can be opened for more careful inspection, actually touching the surface is absolutely not recommended. He says that even dust getting on the material is going to adversely effect its ability to absorb light, so you should really keep it buttoned up as much as possible.

While the Singularity looks like an interesting way to experience near perfect blackness, the concept itself is far from a novelty. A material that can absorb essentially all the light that hits it has important scientific, military, and of course artistic applications; so figuring out how to pull it off has become a pretty big deal.

The WiFi Phone That Respects Your Right To Repair

Phones are getting increasingly more complex, more difficult to repair, and phone manufacturers don’t like you tinkering with their stuff. It’s a portable version of a John Deere tractor in your pocket, and Apple doesn’t want you replacing a battery by yourself. What if there was a phone that respected your freedom? That’s the idea behind the WiPhone, and soon it’s going to be be a crowdfunding campaign. Yes, you will soon be able to buy a phone that respects your freedom.

We took a look at the WiPhone a few months ago, and the idea was solid: make a simple, cheap, handheld device based on the ESP32 WiFi/Bluetooth wonder microcontroller. There are a few other various bits of electronic ephemera for scanning the buttons, an audio codec, and a speaker driver, but the basics of the build are just an LCD and ESP32. The entire idea of this phone is to make calls through WiFi, and given the state of VoIP, it’s a marketable product.

Astute readers may notice that the WiPhone doesn’t have a cellular modem. Yes, this is true, but putting a baseband in a small, low-volume project is incredibly hard. You’re limited to 2G if you don’t want to deal with Broadcom or Qualcomm, and they’re not going to be interested in you if you’re not moving a hundred thousand units, anyway. Also, you’ve got service plans to deal with, multi-country radios, and you’re probably next to a trusted WiFi network right now, anyway.

The WiPhone is designed to be hackable, with daughter boards that turn it into a rainbow or RC car, and easy to assemble. It’s also going to be a crowdfunding campaign at the end of the month. If you want a phone that respects your right to repair, this is the project to look at, even if you don’t need a cellular modem all the time.

This Is A Kickstarter For None More Black

Vantablack is the darkest pigment ever created, capable of absorbing 99.96% of visible light. If you cover something in Vantablack, it turns into a black hole. No detail is presented, and physical objects become silhouettes. Objects covered in Vantablack are outside the human experience. The mammalian mind cannot comprehend a Vantablack object.

Vantablack is cool, but it’s also expensive. It’s also exclusively licensed by [Anish Kapoor]’s studio for artistic use. Understandably, artists have rebelled, and they’re making their own Vantablack-like pigments. Now, the World’s Blackest Black is on Kickstarter. You can get a 150 ml bottle of Black 3.0, something that’s almost black as Vantablack, for £10.

Is this a photoshop? Who knows.

The pigment for Black 3.0 is called Black Magick, and yes, there was a version 2.0 The problem with the earlier version is that although the pigment was blacker than almost anything else, paint isn’t just pigment. You need binders. The new formulation uses a new acrylic polymer to hold the pigment, and ‘nano-mattifiers’ to make the paint none more matte.

What can you do with the blackest black paint you’ve ever seen? Well, taking pictures of an object covered in the blackest black is a tiny bit dumb. This is something that must be experienced in person. You could paint a car with it, which is something I really want to see. You could follow [Anish Kapoor] around in the shadows. Use it as a calibration target. Who knows what we’ll do with the almost-Vantablack when everyone has it.

This Raspberry Pi Is A Stereo Camera And So Much More

Over the years we have featured a huge array of projects featuring the Raspberry Pi, but among them there is something that has been missing in all but a few examples. The Raspberry P Compute Module is the essentials of a Pi on a form factor close to that of a SODIMM module, and it is intended as a way to embed a Pi inside a commercial product. It’s refreshing then to see [Eugene]’s StereoPi project, a PCB that accepts a Compute Module and provides interfaces for two Raspberry Pi cameras.

What makes this board a bit special is that as well as the two camera connectors at the required spacing for stereophotography it also brings out all the interfaces you’d expect on a regular Pi, so there is the familiar 40-pin expansion header as well as USB and Ethernet ports. It has a few extras such as a pin-based power connector, and an on-off switch.

Where are they going with this one? So far we’ve seen demonstrations of the rig used to create depth maps with ROS (Robot Operating System). But even more fun is seeing the 3rd-person-view rig shown in the video below. You strap on a backpack that holds the stereo camera above your head, then watch yourself through VR goggles. Essentially you become the video game. We’ve seen this demonstrated before and now it looks like it will be easy to give it a try yourself as StereoPi has announced they’re preparing to crowdfund.

So aside from the stereophotography why is this special? The answer comes in that it is as close as possible to a fresh interpretation of a Raspberry Pi board without being from the Pi Foundation themselves. The Pi processors are not available to third party manufacturers, so aside from the Odroid W (which was made in very limited numbers) we have never seen a significant alternative take on a compatible Raspberry Pi. The idea that this could be achieved through the Compute Module is one that we hope might be taken up by other designers, potentially opening a fresh avenue in the Raspberry Pi story.

The Raspberry Pi Compute Module has passed through two iterations since its launch in 2014, but probably due to the lower cost of a retail Raspberry Pi we haven’t seen it in many projects save for a few game consoles. If the advent of boards like this means we see more of it, that can be no bad thing.

Continue reading “This Raspberry Pi Is A Stereo Camera And So Much More”

Improving Router-Based Dev Boards With The Onion Omega2 Pro

Before we had Raspberry Pis and Beaglebones, the art of putting a Linux system in a small, portable project was limited to router hacking. The venerable WRT54G controlled Internet-connected robots with a careful application of a Unix-ey firmware. Now, things are different but there’s still a need for a cheap, portable Linux system that’s just good enough to get the job done. Now, there’s an upgrade to the board that follows in the footsteps of that router hacking The Onion Omega2 Pro is up on Crowd Supply, and it’s got more buttons, more switches, and it’s still smaller than a breadboard.

The Onion Omega2 Pro is a slight upgrade over the breadboard-friendly SoM launched a few years ago. The Pro version features a 580 MHz MIPS CPU, 512 MB of RAM (Update: this is 128 MB physical RAM and 384 MB flash swap file), 8 GB of storage, and connectivity with b/g/n WiFi. Unlike the previous version, this is a far more functional system with a 30-pin expansion header, support for battery charging, a micro USB for charging and serial, and a USB host port. Because this is at its heart the guts of a router on a development board, you also get all the fun of WiFi networking. The expansion header connects to various add-ons including a GPS module, OLED display, and an Ethernet port.

Now we have Raspberry Pis and other various boards based on smartphone Systems on Chip, but sometimes you don’t need that much overhead. You don’t need weird Linux distributions dealing with ARM bootloaders. Sometimes you just need something simple, and the Onion Omega2 Pro does just that.

That’s A Lisp Machine In Your Pocket

Computer languages have always advanced faster than computer hardware. Case in point: we’re just now getting CPU instructions for JavaScript floating point numbers. The 1970s and 80s wasn’t the garbage fire of JavaScript instructions in silicon, instead they were all about garbage collection. Lisp machines were CPUs designed to run Lisp efficiently. They were great, until the companies responsible realized you had to sell a product to stay in business. Combine an interesting architecture with rarity and historical interest, and you have a centerpiece of any retrocomputing enthusiasts collection. Yes, we all want a Lisp machine.

Now there’s an interesting project on CrowdSupply that will make that possible. It’s the MakerLisp Machine, a credit card-sized computer that runs bare-metal Lisp.

We first saw the MakerLisp Machine in its raw prototype form at VCF West last August, and it was in a very, very raw state. That was just a prototype, though, but the MakerLisp business card-sized computer still features the Zilog eZ80 running at 50MHz. The basic board includes a USB port for a serial connection and a microSD card slot for storage. It boots into a Lisp environment, and you don’t even have to use a NuBus card. We’re living in the future here.

Because this is a credit card-sized computer, there is of course an expansion board that breaks everything out, including the GPIOs. Being a Z80, you’re also going to get CP/M support, but the real story here is Lisp, in your pocket.