The Apocalypse Bicycle

It seems to be a perennial among humans, the tendency among some to expect the End Times. Whether it was mediaeval Europeans who prepared for a Biblical Armageddon at the first sight of an astronomical phenomenon, 19th-century religious sects busy expecting a Noah’s flood, cold-war survivalists with bunkers under the lawn, or modern-day preppers buying survival gear, we have a weakness for thinking that Time’s Up even when history shows us repeatedly that it isn’t. Popular culture has even told us that the post-apocalyptic world will be kinda cool, with Mad Max-style rusty-looking jacked-up muscle cars and Tina Turner belting out ballads, but the truth is likely to be a lot less attractive. Getting away from danger at faster than walking pace as a starving refugee would likely be a life-or-death struggle without the industrial supply chain that keeps our 21st-century luxury cars on the road, so something more practical would be called for.

[Don Scott] has written a paper describing an extremely straightforward solution to the problem of post-apocalyptic transport, which he calls the Apocalypse Bicycle. As you might expect it’s a two-wheeler, though it’s not the kind of machine on which you’d lead a break-away from the Tour de France peloton. Instead this is a bicycle pared down to its minimum,, without advanced materials and with everything chosen for durability and reliability. Bearings would have grease nipples, for instance, the chain would be completely enclosed for better retention of lubrication, and the wheels would be designed to have strips of salvaged tyre attached to them. Interestingly, the machine would also be designed not to attract attention, with muted matte colours, and no chrome. It occurs to us that many of the durability features of this machine are also those that appear on the rental bicycles owned by bike sharing companies that have been spread liberally on the streets of many cities.

You might wonder what use the idea might have, and why a prepper might consider one alongside their tins of survival rations. But it’s also worth considering that these machines have a real application in the here-and-now, rather than just an imagined one in an apocalyptic future. Many Hackaday readers are fortunate enough to live in countries unaffected by wars or natural disasters, but there are plenty of places today where an aid agency dropping in a load of these machines could save lives.

Apocalyptic cycling has featured little here. But we have brought you at least one bike made from wood.

Peristaltic Pump Moves Fluids Uphill Both Ways

Here’s a skill we should all probably have for after the apocalypse—the ability to build a cheap peristaltic pump that can transport highly viscous fluids, chunky fluids, or just plain water from point A to point B with no priming necessary. That’s exactly what [Jack Ruby] has done with some fairly common items.

He started with a springform cake pan from a thrift store, the kind where the bottom drops out like that centripetal force ride at the carnival. He’s using 2″ casters from Harbor Freight mounted to a block of wood. The casters go round and squeeze fluid through the hose, which is a nice length of heat-resistant silicone from a local homebrew shop. He’s currently using a drill to run the pump, but intends to attach a motor in the future.

[Jack]’s write-up is very thorough and amusing. Stick around to see the pump in action as well as a complete tour. You can also pump colored goo if you’re out of beer materials.

Continue reading “Peristaltic Pump Moves Fluids Uphill Both Ways”

Seawater Cooled Data Centers

swac-mauritius

Remember Mauritius from High School geography? We didn’t either, but apparently it’s a small island nation east of the southern tip of Africa. It seems they are trying to develop an industry in eco-friendly data centers. The plan is to use a pipeline to gather cold water from the ocean, run it two miles to the island, and use it as inexpensive cooling. Because rooms packed with servers generate copious amounts of heat it’s easy to see how this can reduce the cost of maintaining a data center.

The thing that struck us here is, how eco-friendly is this? The article mentions that this technology is fairly mature and is already used in several places. With that in mind, isn’t this just another way to raise the temperature of the oceans, or does the environmental savings of not using electricity or gas to produce the cooling offset this?

[Thanks Vesanies]