DIY Lasers Hack Chat

Join us on Wednesday, October 7th at noon Pacific for the DIY Lasers Hack Chat with Les Wright!

It’s not too much of a reach to say that how we first experienced the magic of lasers sort of dates where we fall on the technology spectrum. For the youngest among us, lasers might have been something trivial, to be purchased for a couple of bucks at the convenience store. Move back a few decades and you might have had to harvest a laser from a CD player to do some experiments, or back further, perhaps you first saw a laser in high school physics class, with that warm, red-orange glow of a helium-neon tube.

But back things up only a few decades before that, and if you wanted to play with lasers, you had to build one yourself. It was a popular if niche hobby with a dedicated following of amateur physicists who scrounged around for the unlikely parts needed: ruby rods, quartz-glass tubes, and exotic dyes. Couple them together with high-voltage power supplies, vacuum pumps made from converted refrigerator compressors, and homemade optical benches, and if the stars aligned, these parts could be coaxed into producing a gloriously intense burst of light, which as often as not hooked its creator as a lifelong laser addict.

We’re not sure which camp Les Wright falls into, but from the content of his growing YouTube channel, we’d say he’s caught the laser bug. We recently took a look at his high-performance nitrogen laser, which he’s been having fun with as the basis for a tunable dye laser. Along the way he’s been necessarily mucking around with high-voltage power supplies, oscilloscopes, and the occasional robot or two.

Les will stop by the Hack Chat to talk about everything going on in his lab, with a focus on his laser experiments. Join us with your questions on DIY lasers, and stop by to pick up some tricks that might help you catch the laser bug too.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, October 4 at 12:00 PM Pacific time. If time zones baffle you as much as us, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

Continue reading “DIY Lasers Hack Chat”

Eight Motors Can Sure Pump A Lot Of Water

Once upon a time, 3D printing was more of a curiosity than a powerful tool, with many printing trinkets and tchotchkes rather than anything of real use. However, over the years as technology and techniques have progressed, we now see more application-ready builds. This water pump from [Let’s Print] is a great example.

The pump consists of two major pieces – a drive unit, and an impeller. The drive unit consists of a gearbox that combines the power of eight electric motors, driving a single shaft. This is all achieved with striking yellow ABS gears in a black housing. The build video does a great job of explaining how to make the project work with different motors, and how to properly use the bolt adjuster to set the backlash on the gear train. The drive unit is then used to turn a 3D-printed impeller pump which is capable of delivering a great deal of water very quickly.

When fired up, the leaky assembly makes an awful racket and a huge mess, but sure as heck shifts a lot of water while it does so. Watching the water spray off the gears as it leaks through the bearings is a great sight, and it’s clear that the device works well. We’d love to see a cost and performance analysis of this pump versus a commercial offering.

While it’s certainly not the most rugged build, it’s a fun one that nevertheless gets the job done. We’d love to see this running a foam machine or a classic slip and slide. Video after the break.

Continue reading “Eight Motors Can Sure Pump A Lot Of Water”

This LEGO Air Conditioner Is Cooler Than Yours

What’s the coolest thing a person can build with LEGO? Well it’s gotta be an air conditioner, right? Technically, [Manoj Nathwani] built a LEGO-fied swamp cooler, but it’s been too hot in London to argue the difference.

This thoroughly modular design uses an Arduino Uno and a relay module to drive four submersible pumps. The pumps are mounted on a LEGO base and sunk into a tub filled with water and ice packs. In the middle of the water lines are lengths of copper tubing that carry it past four 120mm PC case fans to spread the coolness. It works well, it’s quiet, and it was cheap to build. Doesn’t get much cooler than that.

[Manoj] had to do a bit of clever coupling to keep the tubing transitions from leaking. All it took was a bit of electrical tape to add girth to the copper tubes, and a zip tie used as a little hose clamp.

We think the LEGO part of this build looks great. [Manoj] says they did it by the seat of their pants, and lucked out because the copper and plastic tubing both route perfectly through the space of a 1x1x1 brick.

DIY cooling can take many forms. It really just depends what kind of building blocks you have at your disposal. We’ve even seen an A/C built from a water heater.

Compile A Hydroponics System From Source

Tending to a garden is usually a rewarding endeavor, as long as there is good soil to work with. If there isn’t, it can either get frustrating quickly having to deal with soils like sand or hard clay, or it can get expensive by having to truck in compost each year. Alternatively, it’s possible to set up systems of growing plants that don’t need any soil at all, although this requires an automated system otherwise known as hydroponics to manage water and nutrients sent to the plants.

This setup by [Kyle] is unique in that it uses his own open-source software which he calls Mycodo to control the hydroponic system. It is loaded onto a Raspberry Pi 4 (which he notes can now be booted from a USB drive instead of an SD card) which controls all of the peripherals needed for making sure that the water has the correct amount of nutrients and chemical composition.

The build is much more than just a software control panel, though. [Kyle] walks through every part of setting up a small hydroponic system capable of effectively growing 15-20 plants indoors. He grows varieties of lettuce and basil, but this system can work for many more types of plants as well. With just slight variations, a similar system can not only grow plants like these, but fish as well.

Continue reading “Compile A Hydroponics System From Source”

Hands-Free Oreo Dispenser, Now With Milk

A while back, [Emiel] aka [The Practical Engineer] created a hands-free Oreo dispenser for his shop. This was a necessary addition to his fleet of handy tools, and allowed him to multitask much more effectively by using a sander, for example, at the same time that he needed to eat a cookie. Of course, this time-saving device was missing one crucial element: milk. [Emiel] is back in this video to show off his milk-dispensing upgrade to his original Oreo dispenser.

A few ideas were considered before [Emiel] decided to build a separate unit for the milk dispenser, so as not to create a gigantic mess any time an Oreo was delivered, and also to maintain some decorum in the shop. He rebuilt the Oreo dispenser with a 3D printer and then also 3D printed the milk dispenser. The chin-activated switch inside the device turns on a small pump which squirts milk into the user’s mouth, presumably after an Oreo has been delivered.

There are a few problems with the build, but most are easily solved by replacing non-food-grade parts with plastic that is more safe for being around consumables. The only other thing we can see here is that it might be a little hard to keep things clean, both inside and out, but most Oreo-related builds like this one have at least some problem with cleanliness that isn’t impossible to keep up with.

Continue reading “Hands-Free Oreo Dispenser, Now With Milk”

Building A Foam Machine From A Leaf Blower And A Water Pump

Imagine a tub overflowing with bubble bath, except it’s a club dancefloor and music is pumping all night. This is what is known as a “foam party” — a wild and exciting concept that nonetheless many are yet to experience. The concept exploded in popularity in Ibiza in the 1990s, and foam parties are regularly held at nightclubs and festivals the world over.

Foam is generated with the obviously-named foam machine, and these can be readily purchased or hired for anyone wishing to host such an event. However, that’s not the hacker way. If you’re a little ingenious and take heed of the safety precautions, here’s how you can do it yourself.

Continue reading “Building A Foam Machine From A Leaf Blower And A Water Pump”

Custom Machined Pump Keeps CNC Lubrication Under Control

Rub two pieces of metal against each other hard enough, and it won’t be long before they heat up sufficiently to cause problems. That’s especially true when one is a workpiece and one is a tool edge, and the problems that arise from failing to manage the heat produced by friction can cost you dearly.

The traditional way of dealing with this is by pumping heavy streams of liquid coolant at the workpiece, but while that works, it creates problems of its own. That’s where minimum quantity lubrication comes in. MQL uses a fine mist of lubricant atomized in a stream of compressed air, which saves on lube and keeps swarf cleaner for easier recycling. The gear needed for MQL can be pricey though, so [brockard] decided to add homebrew MQL to his CNC router, with great results.

The video below shows the whole process, from raw metal to finished system – skip ahead to about 12 minutes if you just want to see final testing, but be warned that you’ll be missing some high-quality machining. The finished pump is a double-piston design, with each side driven by a cam rotated by a servo. An Arduino controls the speed of the motor based on the current settings; the pump is turned on and off through G-code control of a relay.

The lubricant stream is barely visible in the video, as opposed to the sloshing mess of traditional flood coolants, and seems much more suitable for a hobbyist-grade CNC setup. Need to build a CNC router before you build this? You can do much worse than this one.

Continue reading “Custom Machined Pump Keeps CNC Lubrication Under Control”