All-LEGO Centrifugal Pump

[Yoshihito Isogawa] almost never employs non-LEGO parts in his creations. He created an excellent centrifugal pump out of 100% LEGO. While mostly a curiosity, you can definitely get a sense of how the mechanics work.

A Power Functions motor turns a 6×6 round plate that appears to have 1×2 smooth plates jammed between the studs, and secured with a 4×4 round plate on the other end. He geared up the motor so the assembly is spun very quickly, with those smooth plates forcing the water through a Technic mounting hole in one of the bricks.

[Yoshihito] is known for his utterly elegant, stripped down mechanical assemblies—-check out his books if this is your bag. According to his bio he’s twice won the Japanese medal for best manual, so I guess he’s really good at explaining things! Also, that’s a thing?

For more DIY pump creation check out the air pump made out of a PVC pipe and the DIY syringe pump we published previously.

Quick Hack Cleans Data from Sump Pump

Nobody likes to monitor things as much as a hacker, even mundane things like sump pumps. And hackers love clean data too, so when [Felix]’s sump pump water level data was made useless by a new pump controller, he just knew he had to hack the controller to clean up his data.

Monitoring a sump pump might seem extreme, but as a system that often protects against catastrophic damage, the responsible homeowner strives to take care of it. [Felix] goes a bit further than the average homeowner, though, with an ultrasonic sensor to continually measure the water level in the sump and alert him to pending catastrophes. Being a belt and suspenders kind of guy, he also added a float switch to control the pump, but found that the rapid cycle time made his measurements useless. Luckily the unit used a 555 timer to control the pump’s run time after triggering, so a simple calculation of the right RC values and a little solder job let him increase the on time of the pump. The result: a dry basement and clean data.

We recently discussed the evolution of home automation if you want to know more about the systems that sensors and actuators like these can be part of. Or for a more nuts and bolts guide to networking things together, our primer on MQTT might help.

DIY Ram Pump Obeys the Laws of Physics

Despite the claims of “free energy” on the title of the video below, this is not yet another wacky perpetual motion story. We here at Hackaday fully support the laws of thermodynamics, and we think you should too. But you have to admit that a pump that works without any apparent energy inputs looks kind of shady at first glance.

The apparatus in question is a ram pump, a technology dating back all the way to the 18th century. The version that [Junkyard – Origin of Creativity] built uses commonly available materials like PVC pipes and fittings. About the only things on the BOM that might be hard to scratch up are the brass check valves, which should probably be flap valves rather than the easier to find spring valves. And the only custom part is an adapter to thread the plastic soda bottle that’s used as an air chamber to the PVC, which a 3D printer could take care of if you choose not to hack a bottle cap like [Junkyard] did. The video below shows the impressive lift achieved just by tapping the kinetic energy of the incoming flow.

There, the Second Law of Thermodynamics remains inviolate. But if you still think you can get something for nothing, check out our roundup of perpetual motion and Overunity quackery.

Continue reading “DIY Ram Pump Obeys the Laws of Physics”

A Home Made Air Pump From PVC Pipe

If you need a supply of low pressure air – let’s say enough pressure to ensure a constant supply but not enough to describe as “Compressed air” with a straight face – what do you do? Many people will reach for an aquarium pump, after all that represents a readily available and relatively inexpensive source of bubbles.

But not [truebassB], instead he built his own air pump from first principles (YouTube, embedded below) using PVC pipe. It’s a straightforward design in which the cylinder is a length of pipe with a disc of flat PVC glued to its end, and the piston is fabricated from a short piece of the same tube with a section cut out to reduce its diameter. An adequate seal is achieved using a piece of rubber cut from an inner tube, and the gudgeon pin is cut from a piece of wire. The connecting rod is another longer piece of wire, and the crank is a wooden disc with an offset hole. Power comes from a DC motor taken from a dead power tool. A couple of ball check valves are used for air input and output.

The resulting pump isn’t the prettiest of pumps, and it could probably do with a bit of balancing as it rattles somewhat. But it’s a pump, and it obviously cost next-to-nothing, so that in our eyes makes it a neat build. He’s posted a video of the build which we’ve placed below the break.

Continue reading “A Home Made Air Pump From PVC Pipe”

High Vacuum with Mercury and Glassware

If you want to build your own vacuum tubes, whether amplifying, Nixie or cathode-ray, you’re going to need a vacuum. It’s in the name, after all. For a few thousand bucks, you can probably pick up a used turbo-molecular pump. But how did they make high vacuums back in the day? How did Edison evacuate his light bulbs?

Strangely enough, you could do worse than turn to YouTube for the answer: [Cody] demonstrates building a Sprengel vacuum pump (video embedded below). As tipster [BrightBlueJim] wrote us, this project has everything: high vacuum, home-made torch glassware, and large quantities of toxic heavy metals. (Somehow [Jim] missed out on the high-voltage from the static electricity generated by sliding mercury down glass tubes for days on end.)

Continue reading “High Vacuum with Mercury and Glassware”

Build Your Own In-Fridge Soda Fountain

Who doesn’t love an ice cold soda? Lots of people, probably. This one’s not for them. It’s for those of us that are tired of having to go through the arduous process of manually opening a bottle and pouring a drink. Wouldn’t it be cool if you could have your own soda fountain at home? [Kedar Nimbalkar] thought so, and built a soda fountain that you can install right inside a fridge.

The system is based around using small pumps marketed as “6V DC air pumps” on Amazon. [Kedar] uses an indirect method of pumping the soda in this project. It’s a sad fact that it’s hard to find a cheap pump that’s safe to use with fluids for human consumption, and on top of that, many types of pump out there aren’t self-priming. This means the pump needs to be charged with fluid to work, which can make changing empty bottles a real pain.

Instead of pumping the fluid directly, the pumps instead push air into the top of the sealed soda bottles, which forces soda out of another tube in the bottle. This means that the pumps themselves don’t have direct contact with the soda which is a great design when working with stuff you’re going to put in your body. Following on from this careful design, the tubing selected is food safe. Unfortunately, even though the pumps don’t directly touch the soda itself, it’s highly unlikely the pumps chosen (designed for aquariums) are genuinely food-safe themselves.

When you’re building a beer funnel setup for Australia Day/4th of July/Other, using all manner of industrial or agricultural fittings may be a relatively low risk, as it’s a one-off exposure. But if you’re building a system handling products for human ingestion that you’re using on a regular basis, you really do want to make sure that the parts you use aren’t slowly poisoning you. There’s many ways this can happen — parts may corrode or react with substances in the food, plastics may outgas, or there may be lubricants in the parts that have toxic compounds in them. Just look what can happen if you drink wine out of a gun barrel — and that was from a single exposure!

Overall it’s a cool project, and one that would be especially fun and educational to do with children. Young humans are well known for their predilection towards sugary beverages, and have minds ready to be filled with knowledge about pumps, safe food handling practices, and of course, electronics. We also like [Kedar]’s use of commonly available materials, like a plastic food container for the enclosure. The project would be a great starter on your way to building a more complicated cocktail-mixing barbot. Video after the break.

We know peristaltic pumps are the go-to for safe liquid pumping. Anyone know a hacker friendly way of pumping air while ensuring all parts of the system are food safe? The most creative solution we’ve seen is to use breast pumps but it wasn’t ideal. Let us know your own tricks in the comments!

Continue reading “Build Your Own In-Fridge Soda Fountain”

Cordless Water Pump!

A water pump is one of those items that are uncommonly used, but invaluable when needed. Rarer still are cordless versions that can be deployed at speed. Enter [DIY King 00], who has shared his build of a cordless water pump!

The pump uses an 18 volt brushed motor and is powered by an AEG 18V LiPo battery. That’s the same battery as the rest of [DIY King]’s power tools, making it convenient to use. UPVC pipe was used for the impeller — with a pipe end cap for a housing. A window of plexiglass to view the pump in motion adds a nice touch.

A bit of woodworking resulted in the mount for the pump and battery pack, while a notch on the underside allows the battery to lock into place. Some simple alligator clips on the battery contacts and the motor connected through a switch are all one needs to get this thing running.

Continue reading “Cordless Water Pump!”