Remember AOL? For a lot of folks, America Online was their first ISP, the place where they got their first exposure to the Internet, or at least a highly curated version of it. Remembered by the cool kids mainly as the place that the normies used as their ISP and for the mark of shame an “@aol.com” email address bore, the company nevertheless became a media juggernaut, to the point that “AOL Time Warner” was a thing in the early 2000s. We’d have thought the company was long gone by now, but it turns out it’s still around and powerful enough of a brand that it’s being shopped around for $1.5 billion. We’d imagine a large part of that value comes from Yahoo!, which previous owner Verizon merged with AOL before selling most of the combined entity off in 2021, but either way, it’s not chump change.
For our part, the most memorable aspect of AOL was the endless number of CDs they stuffed into mailboxes in the 90s. There was barely a day that went by that one of those things didn’t cross your path, either through the mail or in free bins at store checkouts, or even inside magazines. They were everywhere, and unless you were tempted by the whole “You’ve got mail!” kitsch, they were utterly useless; they didn’t even make good coasters thanks to the hole in the middle. So most of the estimated 2 billion CDs just ended up in the trash, which got us thinking: How much plastic was that? A bit of poking around indicates that a CD contains about 15 grams of polycarbonate, so that’s something like 30,000 metric tonnes! To put that into perspective, the Great Pacific Garbage Patch is said to contain “only” around 80,000 metric tonnes of plastic. Clearly the patch isn’t 37% AOL CDs, but it still gives one pause to consider how many resources AOL put into marketing.
Wait, what? Is it possible that a tech company just killed off a product with a huge installed base of hardware and a community of dedicated users, and it wasn’t Google? Apparently not, if the stories of the sudden demise of Insteon are to be believed. The cloud-based home automation concern seems to have just disappeared — users report the service went offline at the end of last week, and hasn’t been back since. What’s more, the company’s executives removed Insteon from their LinkedIn profiles, and the CEO himself went so far as to remove his entire page from LinkedIn. The reasons behind the sudden disappearance remained a mystery until today, when The Register reported that Smartlabs, Inc., the parent company of Insteon, had become financially insolvent after an expected sale of the company failed in March. The fact that the company apparently knew this was going to happen weeks ago and never bothered to give the community a heads up before pulling the switches has led to a lot of hard feelings among the estimated 100,000 Insteonhub users.
Then again, with a comet the size of Rhode Island heading our way, a bunch of bricked smart bulbs might just be a moot point. The comet, known as C/2014 UN271, has a nucleus that is far larger than any previously discovered comet, which makes it a bit of an oddball and an exciting object to study. For those not familiar with the United States, Rhode Island is said to be a state wedged between Connecticut and Massachusetts, but even having lived in both those states, we couldn’t vouch for that. For scale, it’s about 80 miles (128 km) across, or a little bit bigger than Luxembourg, which we’re pretty sure is mythical, too. The comet is a couple of billion miles away at this point; it may never get closer than a billion miles from the Sun, and that in 2031. But given the way things have been going these last few years, we’re not banking on anything.
From the “Answering the Important Questions” file, news this week of the Massachusetts Institute of Technology’s breakthrough development of the “Oreometer,” a device to characterize the physical properties of Oreo cookies. The 3D printed device is capable of clamping onto the wafer parts of the popular sandwich cookie while applying axial torque. The yield strength of the tasty goop gluing the two wafers together can be analyzed, with particular emphasis on elucidating why it always seems to stay primarily on one wafer. Thoughtfully, the MIT folks made the Oreometer models available to one and all, so you can print one up and start your own line of cookie-related research. As a starting point, maybe take a look at the shear strength of the different flavors of Oreo, which might answer why the world needs Carrot Cake Oreos.
And finally, since we mentioned the word “skiving” last week in this space, it seems like the all-knowing algorithm has taken it upon itself to throw this fascinating look at bookbinding into our feed. We’re not complaining, mind you; the look inside Dublin’s J.E. Newman and Sons bookbinding shop, circa 1981, was worth every second of the 23-minute video. Absolutely everything was done by hand back then, and we’d imagine that very little has changed in the shop over the ensuing decades. The detail work is incredible, especially considering that very few jigs or fixtures are used to ensure that everything lines up. By the way, “skiving” in this case refers to the process of thinning out leather using a razor-sharp knife held on a bias to the material. It’s similar to the just-as-fascinating process used to make heat sinks that we happened upon last week.
Yes, Kindles are wonderful, a computer full of PDFs are awesome, and [Tim Berners-Lee] will probably go down in history as more important than [Gutenberg]. That doesn’t mean there’s not something intangible about books that brings out the affections of so many bibliophiles. Even a book filled with blank pages can be a work of art unto itself, and most of the time these volumes are handmade.
This video of a hardbound volume made by Smith Settle bookbinders covers the entire process from words on a page to a finished book. No, they’re not using movable type; the folios are created using lithography, but sorting, gluing, sewing and binding the folios is done in much the same way as it was done in the middle ages.
Next up is a wonderful film from 1968 by Iowa state university on creating the gold tooling on fine leather-bound volumes. You’ll be hard pressed to find a book with gold tooling nowadays, but it’s still a technique accessible to the industrious amateur bookbinder.
First, gold leaf is applied to the leather spine of a book. Then, custom-made tools are heated to a few hundred degrees and pressed into the leaf. The heat bonds the gold with the leather, and with custom-designed tools designs are burnt into the leather. After that, the excess leaf is simply wiped off, and a fine tooled leather book is born.
What’s really cool about bookbinding is the fact that just about anyone can do it. Go to a craft store, pick up some hardboard and paper, and bind yourself a book. You could make a blank journal, or for the nerds out there (myself included), make a hard bound volume of the NASA wiring standards.