Flying Convenience Not So Convenient

It’s a situation that plays out every day, all over the world – you walk into work, and there’s a full-scale foam toilet sitting on the bench, demanding to be used in a crackpot project. This time, it happened to be at the [FliteTest] workshop, and naturally, they set about making it fly.

The team at [FliteTest] are well resourced, with a laser cutter being used to quickly produce a set of custom foam board wings. However, after wing failures on their previous projects, this time the team opted for a riveted aluminium wing spar to add strength. A twin-boom tail is used to try to avoid the cistern from interfering with airflow over the elevator, and careful attention is paid to make sure the center of gravity is in the right position for stable flight.

Despite the team’s laudable efforts, the toilet (somewhat unsurprisingly) flies like crap. It just goes to show, you can strap a brushless power system on to just about anything, but aerodynamics will still be standing ready to bring it all crashing down to Earth.

We’ve seen some great builds from [FliteTest] over the years – before the throne, it was an IKEA chair that soared amongst the clouds. Video after the break.

[Thanks to Baldpower for the tip!] Continue reading “Flying Convenience Not So Convenient”

Designing A Toilet Roll Holder

Everything needs to be designed, at one point or another. There are jobs for those who design kitchens, and stadiums, and interplanetary spacecraft. However, there are also jobs for those who design cutlery, hose fittings, and even toilet roll holders. [Eric Strebel] is here to share just such a story.

[Eric] covers the whole process from start to finish. In the beginning, a wide variety of concepts are drawn up and explored on paper. Various ideas are evaluated against each other and whittled down to a small handful. Then, cardboard models are created and the concepts further refined. This continues through several further phases until it gets down to the fun part of choosing colours and materials for the final product.

Watching the effects of cost and manufacturing process shape the finished item is instructive as to how the design process works in the real world. The toilet paper holder itself is an interesting unit, too – using adjustable magnetic detents to enable one-handed use, as well as including a cell phone holder.

We’ve seen [Eric]’s work before – such as his primer on the value of cardboard in design. Video after the break.

Continue reading “Designing A Toilet Roll Holder”

IoTP: The Internet of Toilet Paper

Our first impression of this IoT toilet paper roll was that somebody was pulling our leg. Watching the infomercial-esque video below is alternately hilarious and horrifying, but it leaves you with the unmistakable feeling that this is all a joke, and a pretty good one at that.  Right up until you get to the big Kimberly-Clark logo at the end, that is, and you realize that the international paper concern must be looking at this seriously.

When you read [zvizvi]’s Instructables post, you find out that this project is indeed a legitimate attempt to meld an Amazon Dash button with your toilet paper dispenser. For his proof-of-concept build, [zvizvi] started with a gag “talking TP” roll off eBay, designed to play back a voice clip when the paper is used. It had all the right guts, and being just the size for a Wemos Mini and an accelerometer for motion detection was a bonus. The smart spindle can tally the amount of paper used, so you’ll never be caught without a square to spare. And of course, critical TP usage parameters are uploaded to a cloud server, so that more toilet paper can be rushed to your door when you’re getting low.

The whole idea, including justification based on monitoring TP use as a proxy for bowel health, seems ridiculous, but we suspect there may be some brilliance here. Joke if you will, but in the end it’s probably better than an Internet of Farts.

Continue reading “IoTP: The Internet of Toilet Paper”

You Probably Don’t Want To Find This Toilet In Your Washroom

Ok, this one is a bit bizarre, but in perfect keeping with the subject matter: a talking toilet ripped from the pages of the Captain Underpants children’s books. Hackaday.io user [hamblin.joe]’s county fair has a toilet decorating contest and at the suggestion of their neighbour’s son, [hamblin.joe] hatched a plan to automate the toilet using an Arduino in the fashion of the hero’s foes.

Two Arduinos make up this toilet’s brains, an Adafruit Wave Shield imbues it with sound capabilities, and a sonic wave sensor will trigger the toilet’s performance routine when someone approaches. A windshield wiper motor actuates the toilet bowl lid via a piece of flat iron bar connected to a punched angle bracket. Installing the motor’s mount was a little tricky, since it had to be precisely cut so it wouldn’t shift while in the toilet bowl. A similar setup opens the toilet tank’s lid, but to get it working properly was slightly more involved. Once that was taken care of there was enough room left over for a pair of 12V batteries and a speaker. Oh, and a pair of spooky eyes and some vicious looking teeth.

Continue reading “You Probably Don’t Want To Find This Toilet In Your Washroom”

Hackaday Prize Entry: Arduino Splash Resistant Toilet Foamer

There are some universal human experiences we don’t talk about much, at least not in public. One of them you’ll have in your own house, and such is our reluctance to talk about it, we’ve surrounded it in a fog of euphemisms and slang words. Your toilet, lavatory, john, dunny, khazi, bog, or whatever you call it, is part of your everyday life.

For his Hackaday Prize entry, [VijeMiller] tackles his smallest room head-on. You see, for him, the chief horror of the experience lies with the dreaded splashback. Yes, a bit of projectile power dumping leaves the old rump a little on the damp side. So he’s tackled the problem with some maker ingenuity and installed an Arduino-controlled foam generator that injects a mixture of soap and glycerin to fill the bowl with a splash-damping load of foam. Rearward inundation avoided.

The parts list reveals that the foam is generated by a fish tank aerator, triggered by a relay which is driven by an Arduino Uno through a power transistor. A solenoid valve controls the flow, and a lot of vinyl tubing hooks it all together. There is an HC/06 Bluetooth module with an app to control the device from a phone, though while he’s posted some Arduino code there is no link to the app. There are several pictures, including a cheeky placement of a Jolly Wrencher, and a shot of what we can only surmise is a text, as foam overflows all over the bathroom. And he’s put up the video we’ve placed below the break, for a humorous demonstration of the device in action.

Continue reading “Hackaday Prize Entry: Arduino Splash Resistant Toilet Foamer”

Logs For A Toilet

The Internet of Things, as originally envisioned in papers dating to the early to mid-90s, is a magical concept. Wearable devices would report your location, health stats, and physiological information to a private server. Cameras in your shower would tell your doctor if that mole is getting bigger. Your car would monitor the life of your cabin air filter and buy a new one when the time arrived. Nanobots would become programmable matter, morphing into chairs, houses, and kitchen utensils. A ubiquity of computing would serve humans as an unseen hive mind. It was paradise, delivered by ever smaller computers, sensors, and advanced robotics.

The future didn’t turn out like we planned. While the scientists and engineers responsible for asking how they could make an Internet-connected toaster oven, no one was around to ask why anyone would want that. At least we got a 3Com Audrey out of this deal.

Fast forward to today and we learn [Christopher Hiller] just put his toilet on the Internet. Why is he doing this? Even he doesn’t know, but it does make for a great ‘logs from a toilet’ pun.

The hardware for this device is a Digistump Oak, a neat little Arduino-compatible WiFi-enabled development board. The Digistump Oak is able to publish to the Particle Cloud, and with just five lines of code, [Chris] is able to publish a flush to the Internet. The sensor for this build is a cheap plastic float switch. There are only three components in this build, and one of them is a 4k7 resistor.

Right now, there are a few issues with the build. It’s battery-powered, but that’s only because [Chris]’ toilet isn’t close enough to a wall outlet. There’s a bit of moisture in a bathroom, and clingfilm solves the problem for now, but some silly cone carne would solve that problem the right way. [Chris] also has two toilets, so he’ll need to build another one.

Saving The Planet One Flush At A Time

Water is a natural resource that some of use humans take for granted. It seems that we can turn on a facet to find an unlimited supply. That’s not true in all parts of the world. In the US, toilets use 27% of household water requirements. That’s a lot of water to only be used once. The water filling the toilet after the flush is the same as that comes out of the sink. [gregory] thought it would make sense to combine toilet tank filling with hand washing as those two activities happen at the same time.

To accomplish this, a DIY sink and faucet were put in-line with the toilet tank fill supply. The first step was to make a new tank lid. [gregory] used particle board and admits it probably isn’t the best material, but it is what he had on hand. A hole was cut in the lid where a metal bowl is glued in. Holes were drilled in the bottom of the bowl so that water could drain down into the tank. The faucet is just standard copper tubing. The curve was bent by hand using a wire wrap method to keep it from kinking. The only remaining part was to connect the fill line (after the fill valve) to the faucet. Now, when the toilet is flushed, the faucet starts flowing.

Continue reading “Saving The Planet One Flush At A Time”