The Drone That Can Play Dodgeball

Drones (and by that we mean actual, self-flying quadcopters) have come a long way. Newer ones have cameras capable of detecting fast moving objects, but aren’t yet capable of getting out of the way of those objects.  However, researchers at the University of Zurich have come up with a drone that can not only detect objects coming at them, but can quickly determine that they’re a danger and get out of the way.

The drone has cameras and accompanying algorithms to detect the movement in the span of a couple of milliseconds, rather than the 20-40 milliseconds that regular quad-copters would take to detect the movement. While regular cameras send the entire screens worth of image data to the copter’s processor, the cameras on the University’s drone are event cameras, which use pixels that detect change in light intensity and only they send their data to the processor, while those that don’t stay silent.

Since these event cameras are a new technology, the quadcopter processor required new algorithms to deal with the way the data is sent. After testing and tweaking, the algorithms are fast enough that the ‘copter can determine that an object is coming toward it and move out of the way.

It’s great to see the development of new techniques that will make drones better and more stable for the jobs they will do. It’s also nice that one day, we can fly a drone around without worrying about the neighborhood kids lobbing basketballs at them. While you’re waiting for your quadcopter delivered goods, check out this article on a quadcopter testbed for algorithm development.

Nimble Dodgebot Is Super Skittish

img_3562

For one of [Aron’s] recent robotics modules at college he was tasked with building a small robot. He decided to make project Dodgebot, a cute and extremely quick robot that won’t run into things!

The body is made of perforated steel and supports the motor boxes with wheels (stolen from a toy perhaps?), two IR sensors, and the tidy protoboard on top to contain the electronics — seriously check out the wiring on it!

To control it he’s using an 18-pin dsPIC30F3012 and a SN754410NE driver. The robot works by detecting different states based on the distance measurements from each sensor, and then varying the output to each motor. It’s extremely quick and quite fun to watch as it seems to dodge everything in its path! See for yourself, after the break. 

Continue reading “Nimble Dodgebot Is Super Skittish”