Mendocino Motor Drives Cubicle Conversations

Mendocino motors are solar-powered electric motors that rely on pseudo-levitation.  The levitation comes from magnets mounted on either end of the shaft, which repel same-field magnets fixed below them into the base.  When light shines on the solar panels, current flows through connected magnet wire windings, creating an electromagnetic field that interacts with a large stationary magnet mounted underneath. These constantly repelling forces spin the shaft, and the gaps between the solar panels provide the on-off cycle needed to make it spin 360°.

As [Konstantin] discovered, building this simple motor and getting it to spin depends on a lot of factors. The number of windings, the weight of each solar panel, and the magnet sizes all figure in. [Konstantin]’s struggles are your gain, however. His Instructable takes the guesswork out of the tolerances and he designed a nice, open-source 3D-printed structure to boot.

You’re right, these motors can’t do much work. But it would definitely look cool on your desk and might even start a conversation or two. If not, whip up this little electromagnetic train.

Continue reading “Mendocino Motor Drives Cubicle Conversations”

OpenEMS Makes Electromagnetic Field Solving… Merely Difficult

To ordinary people electronics is electronics. However, we know that the guy you want wiring your industrial furnace isn’t the guy you want designing a CPU. Neither of those guys are likely to be the ones you want building an instrumentation amplifier. However, one of the darkest arts of the electronic sects is dealing with electromagnetic fields. Not only is it a rare specialty, but it requires a lot of high-powered math. Enter OpenEMS, a free and open electromagnetic field solver.

We would like to tell you that OpenEMS makes doing things like antenna analysis easy. But that’s like saying Microsoft Word makes it easy to write a novel. In one sense, yes, but you still need to know what you are doing. In fairness, though, the project does provide a good set of tutorials, ranging from a simple wave guide to a sophisticated phased array of patch antennas. Our advice? Start with the waveguide and work your way up from there.

The software uses Octave or MATLAB for scripting, plotting, and support. You can download it for Windows or Linux.

If you want to start with something more intuitive for electromagnetic field visualization, this might help. If you prefer your models more concrete and less abstract, perhaps you should work at Lincoln Lab.