Mood Lamp Also Warns Of Nuclear Catastrophe

[Michal Zalewski] has radiation on the brain. Why else would he gut a perfectly-horrible floor lamp, rebuild the entire thing with high-power RGB LEDs, and then drive it with a microcontroller that is connected up to a Geiger-Müller tube? Oh right, because it also looks very cool, and Geiger tubes are awesome.

If you’ve been putting off your own Geiger tube project, and we know you have, [Michal]’s detailed explanation of the driver circuit and building one from scratch should help get you off the couch. Since a Geiger tube needs 400 volts DC, some precautions are necessary here, and [Michal] builds a relatively safe inverter and also details a relatively safe way to test it.

The result is a nice piece of decor that simultaneously warns you of a nuclear disaster by flashing lights like crazy, or (hopefully) just makes a nice conversation piece. This is one of the cooler Geiger tube hacks we’ve seen since [Robert Hart] connected up eighteen Geiger tubes, and used them to detect the direction of incoming cosmic rays and use that to compose random music (YouTube, embedded below).

[Michal] is also author of the most excellent Guerrilla Guide to CNC Machining and keeps good tabs on his background radiation.

Continue reading “Mood Lamp Also Warns Of Nuclear Catastrophe”

A Cheap, 555-Based Geiger Counter

Every mad scientist’s lair needs a Geiger counter. After all, if that UFO crashes on the back patio, you might need to know if it is hot. [Tanner_Tech] shows you how to build a cheap one that will get the job done.

You do need a Geiger tube, but a quick search of a popular auction site shows plenty of Russian surplus for a few bucks. The other thing you need is a source of high voltage (about 400V), which is the heart of the circuit using a 555-based DC to DC converter. You can see a video of the device working, below.

The DC to DC converter needs a transformer that [Tanner] swiped out of an alarm clock. A piezo transducer (stolen from a junk microwave) gives you the characteristic click. If you prefer solid state over hollow state, there’s an open source project that uses a PIN diode as a sensor. Or you could add an Arduino and some LEDs.

Continue reading “A Cheap, 555-Based Geiger Counter”

Artist Inadvertently Builds Hodoscope

A Hodoscope is an instrument used to determine the trajectory of charged particles. It’s built out of a three-dimensional matrix of particle detectors – either PIN diodes or Geiger tubes – arranged in such a way that particles can be traced along coincident detectors, revealing their trajectory.

This is not a hodoscope. It’s a chandelier. This chandelier is made of 92 individual Geiger tubes, each connected to a single LED fixture and a speaker. When a charged particle flies through the room and hits a Geiger tube, the light fixture lights up, a ‘click’ plays on the speaker, and the entire room is enveloped in light for a short moment in time. If, however, that charged particle continues on to another Geiger tube, the trajectory of the particle can be deduced.

The purpose of the installation – beside just being art or something – is to show the viewer sources of radiation and normal levels of radioactivity due to terrestrial and cosmic sources. Of course the spacing of these detectors is rather large – it’s made to fit in a gallery – and there is no connection between the detectors, making a coincident circuit impossible. If you want a real hodoscope, here you go.

This installation can be seen at the Burchfield Penney Art Center in Buffalo, NY through April 12. If you’re in the area, go there and eat a banana. Video below. Thanks [David] for the tip.

Continue reading “Artist Inadvertently Builds Hodoscope”