Illustration of author surveying the fruits of his labor by Bomberanian

Learning Linux Kernel Modules Using COM Binary Support

Have you ever felt the urge to make your own private binary format for use in Linux? Perhaps you have looked at creating the smallest possible binary when compiling a project, and felt disgusted with how bloated the ELF format is? If you are like [Brian Raiter], then this has led you down many rabbit holes, with the conclusion being that flat binary formats are the way to go if you want sleek, streamlined binaries. These are formats like COM, which many know from MS-DOS, but which was already around in the CP/M days. Here ‘flat’ means that the entire binary is loaded into RAM without any fuss or foreplay.

Although Linux does not (yet) support this binary format, the good news is that you can learn how to write kernel modules by implementing COM support for the Linux kernel. In the article [Brian] takes us down this COM rabbit hole, which involves setting up a kernel module development environment and exploring how to implement a binary file format. This leads us past familiar paths for those who have looked at e.g. how the Linux kernel handles the shebang (#!) and ‘misc’ formats.

On Windows, the kernel identifies the COM file by its extension, after which it gives it 640 kB & an interrupt table to play with. The kernel module does pretty much the same, which still involves a lot of code.

Of course, this particular rabbit hole wasn’t deep enough yet, so the COM format was extended into the .♚ (Unicode U+265A) format, because this is 2025 and we have to use all those Unicode glyphs for something. This format extension allows for amazing things like automatically exiting after finishing execution (like crashing).

At the end of all these efforts we have not only learned how to write kernel modules and add new binary file formats to Linux, we have also learned to embrace the freedom of accepting the richness of the Unicode glyph space, rather than remain confined by ASCII. All of which is perfectly fine.

Top image: Illustration of [Brian Raiter] surveying the fruits of his labor by [Bomberanian]

Linux Fu: Kernel Modules Have Privileges

I did something recently I haven’t done in a long time: I recompiled the Linux kernel. There was a time when this was a common occurrence. You might want a feature that the default kernel didn’t support, or you might have an odd piece of hardware. But these days, in almost all the cases where you need something like this, you’ll use loadable kernel modules (LKM) instead. These are modules that the kernel can load and unload at run time, which means you can add that new device or strange file system without having to rebuild or even restart the kernel.

Normally, when you write programs for Linux, they don’t have any special permissions. You typically can’t do direct port I/O, for example, or arbitrarily access memory. The kernel, however, including modules, has no such restriction. That can make debugging modules tricky because you can easily bring the system to its knees. If possible, you might think about developing on a virtual machine until you have what you want. That way, an errant module just brings down your virtual machine. Continue reading “Linux Fu: Kernel Modules Have Privileges”

Need A Linux Kernel Module? Scratch That

If you have been for (or against) Rust in the Linux kernel, get ready for a Linux kernel module written in… Scratch. That’s right. Scratch, the MIT-developed language with blocks popular for teaching kids to code. We didn’t mean “from scratch.” We meant IN Scratch. The bootstrap code and Makefile is out there on GitHub.

Of course, it is a simple module and the reason it is possible is because of the scratchnative system that lets you compile Scratch into C code. If you want to look at the decidedly simple code, you can open it in your browser.

Continue reading “Need A Linux Kernel Module? Scratch That”