Creating KiCad Parts From A PDF Automagically

For anyone out there who has ever struggled finding a part for Eagle or KiCad, there are some who would say you’re doing it wrong. You’re supposed to make your own parts if you can’t find them in the libraries you already have. This is really the only way; PCB design tools are tools, and so the story goes you’ll never be a master unless you can make your own parts.

That said, making schematic parts and footprints is a pain, and if there’s a tool to automate the process, we’d be happy to use it. That’s exactly what uConfig does. It automatically extracts pinout information from a PDF datasheet and turns it into a schematic symbol.

uConfig is an old project from [sebastien caux] that’s been resurrected and turned into an Open Source tool. It works by extracting blocks of text from a PDF, sorts out pin numbers and pin labels, and associates those by the relevant name to make pins. It’s available as a pre-built project (for Windows, even!), and works kind of like magic.

The video demo below shows uConfig importing a PDF datasheet — in this case a PIC32 — automatically extracting the packages from the datasheet, and turning that into a schematic symbol. It even looks as if it’ll work, too. Of course, this is just the schematic symbol, not the full part including a footprint, but when it comes to footprints we’re probably dealing with standard packages anyway. If you’re looking to build a software tool that takes a datasheet and spits out a complete part, footprint and all, this is the place to start.

Continue reading “Creating KiCad Parts From A PDF Automagically”

Doom Battle Royale Mod with 64 Players Hurts Plenty

Sixty-four players are dropped into a map, but there can be only one that emerges victorious…heard that before, right? Thanks to PC Game modder [Bambamalicious] there is yet another entrant into the rapidly growing videogame genre. The difference this time, however, is that their 64 player DooM Royale (with cheese) mod is ready to show all those other also-ran games how the granddaddy of FPS games does it.

Doom Battle Royale WIth Cheese Mod Screenshot

According to the announcement post the mod is “…a 64 player Battle Royale using Doom 2 as the IWAD, and the Zandronum engine as it’s base. The speed of gameplay will be unchanged from normal Doom, and when you die, that’s not the end for you!”. There is a respawn system, but each player is given a limited number of lives. To ensure no server feels like a ghost town [Bambamalicious] included bots that will spawn in matches with low participation. Each game inevitably results in a “last man standing” face off that has the victor coming away with the coveted “Royale with cheese”. Other than the aforementioned changes, this is still the seminal classic Doom (1993).

Do note that in order to play the mod, the Zandronum engine is a required in order to take part in the fun. The engine is the backbone that allows for leaderboards as well as hopping between custom servers. Zandronum additionally supports many other multiplayer match types for instance: Team Deathmatch, Capture the Flag, Possession, and Skulltag. Up to 64 players are supported in those match types as well.

From the looks of the DooM Royale (with cheese) map, there should be frequent enemy player encounters and no respite for those seeking to just “hide in a bathtub”. The multiple levels should supply plenty of opportunity to take advantage by attacking from above. Test footage of the mod in action can be seen in the video below.

For more on the DOS game that just won’t die, check out Doom running on an ATM.

Continue reading “Doom Battle Royale Mod with 64 Players Hurts Plenty”

Microsoft Releases Crown Jewels — From 1982!

If you look back 30 or so years ago, it wasn’t clear what was going to happen with personal computers. One thing most people would have bet on, though, was that CP/M — the operating system from Digital Research — would keep growing and power whatever new machines were available. Except it didn’t. MS-DOS took over the word and led — eventually — to the huge number of Windows computers we know today. Microsoft has released the source code to MS-DOS 1.25 and 2.0 on GitHub.

Microsoft — then another fledgling computer company — had written some BASIC interpreters and wanted in on the operating system space. They paid the princely sum of $75,000 to Seattle Computer Products for something called QDOS written by [Tim Paterson]. Rebranded as MS-DOS, the first version appeared in late 1981 and version 1.25 was out about a year later.

While you might not think having MS-DOS source code is a big deal, there’s still a lot of life left in DOS and it is also interesting from an educational and historical perspective. If you don’t want to read x86 assembly language, there’s also the BASIC source for the samples (paradoxically, in the bin subdirectory) along with compiled COM files for old friends like EDLIN and DEBUG.

Continue reading “Microsoft Releases Crown Jewels — From 1982!”

Nim Writes C Code — And More — For You

When we first heard Nim, we thought about the game. In this case, though, nim is a programming language. Sure, we need another programming language, right? But Nim is a bit different. It is not only cross-platform, but instead of targeting assembly language or machine code, it targets other languages. So a Nim program can wind up compiled by C or interpreted by JavaScript or even compiled by Objective C. On top of that, it generates very efficient code with — at least potentially — low overhead. Check out [Steve Kellock’s] quick introduction to the language.

The fact that it can target different compiler backends means it can support your PC or your Mac or your Raspberry Pi. Thanks to the JavaScript option, it can even target your browser. If you read [Steve’s] post he shows how a simple Hello World program can wind up at under 50K. Of course, that’s nothing the C compiler can’t do which makes sense because the C compiler is actually generating the finished executable, It is a bit harder though to strip out all the overhead yourself.

Continue reading “Nim Writes C Code — And More — For You”

Final Fantasy Exploit Teaches 32-bit Integer Math

One of the fun things about old video games, besides their obvious nostalgia, is that some of the more popular games have been pried apart and tinkered with for years, leading to a lot of new “development” within the games. This often uncovers some hidden gems that gamers might not have had any knowledge of during the game’s heyday, like this coding oddity found in Final Fantasy 7 that illustrates a lot about how 32-bit processors do math.

The original PlayStation used a 32-bit RISC processor, but the most significant bit could be used for integer signing. This means that if you have an integer that has a value of 2,147,483,647 (01111111111111111111111111111111 in binary) and you add one, the value is suddenly negative 2147483648 because the most significant digit is also an indicator of the integer’s sign. In this situation, the integer is said to “overflow”. In Final Fantasy 7, if you can somehow get a character to deal 262,144 damage in one hit (much less than two billion, due to the way the game does damage calculations), the game has a little bit of a meltdown.

[4-8Productions] had to do a lot of work to show how this glitch can be exploited in the game as well. Usually damage in this game is limited to 9,999 but under certain configurations (admittedly obtained by using other exploits and tools available for FF7 like a savegame editor) two of the characters can deal more damage than this critical value, exposing the 32-bit processor’s weak spot.

Even though integer signing is a pretty basic concept for most of us, the video is definitely worth a watch especially if you’re fans of the classic game. Of course, Final Fantasy 7 isn’t the only classic that has been exploited and reverse-engineered to the extreme. You can use a Super Mario World level to implement a calculator now, too.

Continue reading “Final Fantasy Exploit Teaches 32-bit Integer Math”

It’s The Web, Basically

If you are of a certain age, you probably learned to program in Basic. Even if you aren’t, a lot of microcontroller hobbyists got started on the Basic Stamp, and there are plenty of other places where to venerable language still hides out. But if you want to write cool browser applications, you have to write JavaScript, right? Google will now let you code your web pages in Basic. Known as WWWBasic, this is — of course — a Javascript hack that you can load remotely into a web page and then have your page use Basic for customization. You can even import the thing into Node.js and use Basic inside your JavaScript, although it is hard to think of why you’d want to.

According to the project’s documentation — which is pretty sparse so far, we’re afraid — the Basic program is compiled into JavaScript on page load. There are a few examples, so you can generally pick up what’s available to use. There are graphics, the ability to read a keyboard key, and a way to handle the mouse.

Continue reading “It’s The Web, Basically”

Easy Portable Serial Ports

Modern operating systems insulate us — as programmers, especially — from so much work. Depending on how far back you go, programmers had to manage their own fonts, their own allocation space on mass storage, or even their own memory allotments. Every year, though, it seems like things get easier and easier. So why is it so annoying to open a simple serial port? It isn’t hard, of course, but on every operating system it seems to be painful — probably in an attempt to be flexible. And it is even worse if you want portability. I needed to write some C code that read data from an FPGA’s embedded logic analyzer, and I was annoyed at having to write yet more serial port code. I have my own shim library, but it isn’t well tested and isn’t all that flexible — it does what I need, but I wanted something better. What I wound up with the serial library from Sigrok. You know Sigrok? The logic analyzer software.

 You might counter that the serial port is old hat, so no one wants to support it with modern systems. While the physical serial port might be on life support, there’s no shortage of equipment that connects via USB that appears to be a serial port. So while I was talking to an FTDI chip on an FPGA board, you could just as well be talking to an Arduino or a USB voltmeter or anything.

I guess the Sigrok developers had the same problem I did and they took the time to write a nice API and port it to major platforms. Although Sigrok uses it, they maintain it as a separate project and it was just what I needed. Sort of. I say sort of because the version installed with Ubuntu was old and I needed some features on the newest release, but — as usual — the Internet came to the rescue. A quick Git command, and four lines of build instructions and we were ready to go.

Continue reading “Easy Portable Serial Ports”