See Satellites With A Simple Radio Telescope

Have you got a spare Dish Network antenna lying about? They’re not too hard to come by, either curbside on bulk waste day or perhaps even on Freecycle. If you can lay hands on one, you might want to try this fun radio telescope build.

Now, don’t expect much from [Justin]’s minimalist build. After all, you’ll be starting with a rather small dish and an LNB for the Ku band, so you won’t be doing serious radio astronomy. In fact, the BOM doesn’t include a fancy receiver  – just a hacked satellite finder. The idea is to just get a reading of the relative “brightness” of a radio source without trying to demodulate the signal. To that end, the signal driving the piezo buzzer in the sat finder is fed into an Arduino through a preamp. The Arduino also controls stepper motors for the dish’s azimuth and elevation control, which lets it sweep the sky and build up a map of signal intensity. The result is a clear band of bright spots representing the geosynchronous satellites visible from [Justin]’s location in Brazil.

Modifications are definitely on the docket for [Justin], including better equipment that will allow him to image the galactic center. There may be some pointers for him in our coverage of a tiny SDR-based radio telescope, or from this custom receiver that can listen to Jupiter.

Continue reading “See Satellites With A Simple Radio Telescope”

Sniffing And Decoding Bluetooth LE Advertising Packets And NRF24L01+ Comms. For Under $30

[Omri] just documented his journey to sniff and decode the protocol used by the popular NRF24L01+ transceiver off the air for very cheap. As he was designing a mesh network code and needed a way to monitor/debug the overall network performance, [Omri] decided to look for some RF hardware.

We’re sure that most of our readers are familiar with Software Defined Radio (SDR), which not so long ago became popular when some engineer discovered hidden registers inside Realtek RTL2832U chip, allowing many DVB-T dongles to be converted into RF listening devices. Unfortunately for [Omri], most of them have a maximum listening frequency of 2.2GHz, while the NRF24L01+ emits at 2.4GHz. The solution? Buy a 2.2-2.4GHz antenna from Aliexpress with a low-noise block downconverter (LNB), used for a Multichannel Multipoint Distribution Service (MMDS). The LNB therefore takes the 2.2-2.4GHz signal and downconverts it to around 400MHz, allowing any RTL-SDR-compatible DVB-T dongle to listen to the NRF communications. A program was then written to decode the RF signal and output the sniffed data in realtime.