Jill Tarter: Searching for E.T.

What must it be like to devote your life to answering a single simple but monumental question: Are we alone? Astronomer Jill Tarter would know better than most what it’s like, and knows that the answer will remain firmly stuck on “Yes” until she and others in the Search for Extraterrestrial Intelligence project (SETI) prove it otherwise. But the path she chose to get there was an unconventional as it was difficult, and holds lessons in the power of keeping you head down and plowing ahead, no matter what.

Endless Hurdles

To get to the point where she could begin to answer the fundamental question of the uniqueness of life, Jill had to pass a gauntlet of obstacles that by now are familiar features of the biography of many women in science and engineering. Born in 1944, Jill Cornell grew up in that postwar period of hope and optimism in the USA where anything seemed possible as long as one stayed within established boundaries. Girls were expected to do girl things, and boys did boy things. Thus, Jill, an only child whose father did traditional boy things like hunting and fixing things with her, found it completely natural to sign up for shop class when she reached high school age. She was surprised and disappointed to be turned down and told to enroll in “Home Economics” class like the other girls.

Doing “boy things” with Dad. Source: SETI Institute

She eventually made it to shop class, but faced similar obstacles when she wanted to take physics and calculus classes. Her guidance counselor couldn’t figure why a girl would need to take such classes, but Jill persisted and excelled enough to get accepted to Cornell, the university founded by her distant relation, Ezra Cornell. Jill applied for a scholarship available to Cornell family members; she was turned down because it was intended for male relatives only.

Undeterred, Jill applied for and won a scholarship from Procter & Gamble for engineering, and entered the engineering program as the only woman in a class of 300. Jill used her unique position to her advantage; knowing that she couldn’t blend into the crowd like her male colleagues, she made sure her professors always knew who she was. Even still, Jill faced problems. Cornell was very protective of their students in those days, or at least the women; they were locked in their dorms at 10:00 each night. This stifled her ability to work on projects with the male students and caused teamwork problems later in her career.

No Skill is Obsolete

Despite these obstacles, Jill, by then married to physics student Bruce Tarter, finished her degree. But engineering had begun to bore her, so she changed fields to astrophysics for her post-graduate work and moved across the country to Berkeley. The early 70s were hugely inspirational times for anyone with an eye to the heavens, with the successes of the US space program and leaps in the technology available for studies the universe. In this environment, Jill figured she’d be a natural for the astronaut corps, but was denied due to her recent divorce.

Disappointed, Jill was about to start a research job at NASA when X-ray astronomer Stu Boyer asked her to join a ragtag team assembled to search for signs of intelligent life in the universe. Lacking a budget, Boyer had scrounged an obsolete PDP-8 from Berkeley and knew that Jill was the only person who still knew how to program the machine. Jill’s natural tendency to fix and build things began to pay dividends, and she would work on nothing but SETI for the rest of her career.

From the Bureaucratic Ashes

At Arecibo. Source: KQED Science

SETI efforts have been generally poorly funded over the years. Early projects were looked at derisively by some scientists as science fiction nonsense, and bureaucrats holding the purse strings rarely passed up an opportunity to score points with constituents by ridiculing efforts to talk to “little green men.” Jill was in the thick of the battles for funding, and SETI managed to survive. In 1984, Jill was one of the founding members of the SETI Institute, a private corporation created to continue SETI research for NASA as economically as possible.

The SETI Institute kept searching the skies for the next decade, developing bigger and better technology to analyze data from thousands of frequencies at a time from radio telescopes around the world. But in 1993, the bureaucrats finally landed the fatal blow and removed SETI funding from NASA’s budget, saving taxpayers a paltry $10 million. Jill and the other scientists kept going, and within a year, the SETI Institute had raised millions in private funds, mostly from Silicon Valley entrepreneurs, to continue their work.

Part of the Allen Telescope Array. Source: SETI Institute

The Institute’s Project Phoenix, of which Jill was Director until 1999, kept searching for signs of life out there until 2004, with no results. They proposed an ambitious project to improve the odds — an array of 350 radio telescopes dedicated to SETI work. Dubbed the Allen Telescope Array after its primary patron, Microsoft co-founder Paul Allen, the array has sadly never been completed. But the first 42 of the 6-meter dishes have been built, and the ATA continues to run SETI experiments every day.

Jill Tarter retired as Director of SETI Research for the Institute in 2012, but remains active in the SETI field. Her primary focus now is fundraising, leveraging not only her years of contacts in the SETI community but also some of the star power she earned when it became known that she was the inspiration for the Ellie Arroway character in Carl Sagan’s novel Contact, played by Jodie Foster in the subsequent Hollywood film.

Without a reasonable SETI program, the answer to “Are we alone?” will probably never be known. But if it is answered, it’ll be thanks in no small part to Jill Tarter and her stubborn refusal to stay within the bounds that were set for her.

Search for Military Satellite Finds One NASA Lost Instead

[Scott Tilley] was searching for radio signals from the Air Force’s top-secret ZUMA satellite. He found something that is — we think — much more interesting. He found NASA’s lost satellite called IMAGE. You are probably wondering why it is interesting that someone listening for one satellite found another one. You see, NASA declared IMAGE dead in 2005. It went silent unexpectedly and did not complete its mission to image the magnetosphere.

NASA did a failure review and concluded that in all likelihood a single event upset caused a power controller to trip. A single event upset, or SEU, is a radiation event and should have been automatically recovered. However, there was a design flaw that failed to report certain types of power controller failures, including this one.

The report mentioned that it might be possible to reset the controller at a specific time in 2007, but given that NASA thought the satellite was out of commission that either never occurred or didn’t work. However, something apparently woke the satellite up from its sleep.

[Scott] did a lot of number crunching to determine that the satellite’s spin rate had only decreased a little from its operational value and that the doppler data matched what he expected. [Scott] can’t read or command the telemetry, so he doesn’t know how healthy the satellite is, but it is at least operational to some degree. It’s really neat to see members of the team that worked on IMAGE leaving comments congratulating [Scott] on the find. They are working to get him data formatting information to see if more sense can be made of the incoming transmissions.

Who knew listening to satellites could be so exciting? If you want to build your own ground station, you might be interested in this antenna mount. If you need to know what’s overhead, this can help.

See Satellites with a Simple Radio Telescope

Have you got a spare Dish Network antenna lying about? They’re not too hard to come by, either curbside on bulk waste day or perhaps even on Freecycle. If you can lay hands on one, you might want to try this fun radio telescope build.

Now, don’t expect much from [Justin]’s minimalist build. After all, you’ll be starting with a rather small dish and an LNB for the Ku band, so you won’t be doing serious radio astronomy. In fact, the BOM doesn’t include a fancy receiver  – just a hacked satellite finder. The idea is to just get a reading of the relative “brightness” of a radio source without trying to demodulate the signal. To that end, the signal driving the piezo buzzer in the sat finder is fed into an Arduino through a preamp. The Arduino also controls stepper motors for the dish’s azimuth and elevation control, which lets it sweep the sky and build up a map of signal intensity. The result is a clear band of bright spots representing the geosynchronous satellites visible from [Justin]’s location in Brazil.

Modifications are definitely on the docket for [Justin], including better equipment that will allow him to image the galactic center. There may be some pointers for him in our coverage of a tiny SDR-based radio telescope, or from this custom receiver that can listen to Jupiter.

Continue reading “See Satellites with a Simple Radio Telescope”

Listening to Jupiter on a DIY Radio

By Jove, he built a radio!

If you want to get started with radio astronomy, Jupiter is one of the easiest celestial objects to hear from Earth. [Vasily Ivanenko] wanted to listen, and decided to build a modular radio receiver for the task. So far he’s written up six of the eight planned blog posts.

The system uses an LNA, a direct conversion receiver block, and provides audio output to a speaker, output to a PC soundcard, and a processed connection for an analog to digital converter. The modules are well-documented and would be moderately challenging to reproduce.

Continue reading “Listening to Jupiter on a DIY Radio”

Listen to the Sun, Saturn, and the Milky Way with Your Own Radio Telescope

Students from the Indian Institute of Science Education and Research combined a commercial satellite dish, a satellite finder and an Arduino, and produced a workable radio telescope. The satellite dish provides the LNB (low noise block) and the associated set-top box is used only for power.  Their LNB employs an aluminum foil shield to block extraneous signals.

In addition to the hardware, the team built Python software to analyze the data and show several practical applications. They used known geostationary satellites to calibrate the signal from the finder (digitized by the Arduino) to determine power per unit voltage. They also calculated the beam width (about 3.4 degrees) and used the sun for other calibration steps.

Continue reading “Listen to the Sun, Saturn, and the Milky Way with Your Own Radio Telescope”

The Tiny Radio Telescope

Radio telescopes are one of the more high-profile pieces of scientific apparatus. There is an excitement to stories of radio astronomers of old probing the mysteries of the Universe on winter nights in frigid cabins atop massive parabolas, even if nowadays their somewhat more fortunate successors do the same work from the comfort of their labs using telescopes that may be on the other side of the world.

You might think if you look at the Arecibo Observatory, Lovell Telescope, or other famous pieces of apparatus, that this is Big Science, out of reach for mere mortals such as yourself without billion-dollar research programs. Maybe [Paul Scott] and [Allen Versfeld]’s Tiny Radio Telescope project will change that view.

The NRAO published a radio telescope design a few years ago for use mainly as an educational tool, the Itty Bitty Telescope. It used a satellite TV dish and LNB feeding a signal meter as a simple telescope to detect the Sun, and black body radiation from the surrounding objects. It’s a simple design for kids to get their heads around, and [Scott] and [Allen] have set out to turn it into something more useful with an RTL-SDR instead of a signal meter and a motorised mount for automated observations.

This is one of those projects on Hackaday.io that moves slowly but you know will eventually deliver on its promise. With a 1m dish and a consumer LNB it’s never going to make a discovery that will rock the world, but that’s not the point. It may be science that the astrophysicists moved on from decades ago, but it’s still quite an achievement that the radio sky can be imaged using such mundane equipment.

We’ve featured backyard radio astronomy before a few times, from this UHF school science project to another satellite TV based telescope. Keep them coming!

A thank you to Southgate ARC for the prod.

All Quiet on the West Virginia Border: The National Radio Quiet Zone

Ask a hundred people why they like to escape to the forest and you’ll probably get a hundred reasons, but chances are good that more than a few will say they seek the peace and quiet of the woods. And while the woods can be a raucous place between the wildlife and the human visitors, it is indeed a world apart from a busy city street, at least in the audio frequencies. But on the EM spectrum, most forests are nearly as noisy as your average cube farm, and that turns out to be a huge problem if you happen to run exquisitely sensitive radio receivers.  That’s the reason for the National Radio Quiet Zone, a 13,000 square mile electromagnetic safe-zone in the woods west of Washington DC. Who’s listening to what and why are a fascinating part of this story, as are the steps that are taken to keep this area as electromagnetically quiet as possible.

Continue reading “All Quiet on the West Virginia Border: The National Radio Quiet Zone”