Vicious Little Desktop Shredder Pulverizes Plastic Waste

We’ve all likely seen video of the enormous industrial shredders that eat engine blocks for lunch and spit out a stream of fine metal chips. The raw power of these metal-munching monsters is truly fearsome, and they appear to be the inspiration for SHREDII, the miniature plastic shredder for at-home recycling of plastic waste.

The fact that SHREDII isn’t all that large doesn’t make it any less dangerous, at least to things smaller and softer than engine blocks, like say fingers. The core of the shredder is a hexagonal axle carrying multiple laser-cut, sheet steel blades. The rotating blades are spaced out along the axle so they nest between a bed of stationary blades; rotating the common axle produces the shearing and cutting action needed to shred plastic.

On version one of the shredder, each blade had two hooked teeth, and the whole cutting head was made from relatively thick steel. When driven by a NEMA 34 stepper — an admittedly odd choice but it’s what they could get quickly — through a 50:1 planetary gearbox, the shredder certainly did the business. The shreds were a little too chunky, though, so version two used thinner steel for the blades and gave the rotary blades more teeth. The difference was substantial — much finer shreds that were suitable for INJEKTO, their homebrew direct-feed injection molding machine.

There’s a lot to be said for closing the loop on plastics used in desktop manufacturing processes, and the team of SHREDII and INJEKTO stands to help the home gamer effectively reuse plastic waste. And while that’s all to the good, let’s face it — the oddly satisfying experience of watching a shredder like this chew through plastic like it isn’t even there is plenty of reason to build something like this.

Continue reading “Vicious Little Desktop Shredder Pulverizes Plastic Waste”

Rotary Indexer Gives Mill A 4th Axis (sort Of)

Rotary indexer’s are standard issue in most machine shops. These allow you to hold or chuck a work piece, and then a graduated handle lets you to rotate the workpiece. Useful when you want to drill or tap axial or radial features. A rack and pinion drive ensures that the workpiece does not move under machining load. Quite often, these indexers also have a manual lock to take care of gear backlash and play. Automating them is not too difficult either. You could use just a stepper motor (open loop) or servo+encoder (closed loop) to drive the turntable.

[smashedagainst] needed to drill six radial holes on a part. And he had to do it on 500 pieces for a total of 3000 holes. That was just for the first initial run, with more drilling likely in the future. The part in question was small and light weight. So instead of using a heavy duty, industrial grade unit, he built an all-electric rotary indexing jig using a stepper motor and an Arduino, giving him a sort of rotary 4th axis. His idea was to directly use the stepper motor to rotate the workpiece without any gearing, but he needed to build his own rig to do so.

Continue reading “Rotary Indexer Gives Mill A 4th Axis (sort Of)”