Turn Drone Into A Large Propeller To Increase Hover Efficiency

Multirotor drones are significantly more popular than conventional helicopter designs for many reasons, which do not include efficiency. Making use of the aerodynamic effects behind this, [Nicholas Rehm] was able to significantly increase the efficiency of his experimental tricopter by turning it into one large spinning propeller.

Since aerodynamic drag is proportional to velocity, a small, high-RPM propeller will require more power to produce the same thrust as a large, low-RPM propeller. With this in mind, [Nicholas] built a tricopter that can rotate all three long arms together using a single servo, giving it very aggressive yaw control. By attaching a wing to each of the arms, it becomes a large variable pitch propeller powered by tip thrusters.Power draw graph

To measure the efficiency of the craft, a small lidar sensor was added to allow accurate PID altitude control. While keeping the drone at a constant altitude a few feet off the ground, [Nicholas] measured the power draw of the motors in a hover, and then let the drone spin around its yaw axis up to almost 5 rev/s.

At a spin rate of 4 rev/s, the power draw of the motors was reduced by more than 60%. Even compared to the drone without the added weight of the wings, it still used 50% less power to maintain altitude.

Since [Nicholas] hadn’t yet implemented horizontal position control while spinning, the length of each test run was limited by the wind drift. He plans to solve this, and also do some testing of the drone in horizontal flight, where the added airfoils will also increase efficiency.

We’ve featured a few of [Nicholas]’ flying machines here on Hackaday, including a foam F-35 VTOL and a cyclocopter. Most of his aircraft run his open source dRehmFlight flight stabilization, created specifically for hacking.

Continue reading “Turn Drone Into A Large Propeller To Increase Hover Efficiency”

Cyclocopter Flies With Eight Spinning Horizontal Wings

For conventional vertical takeoff and landing rotors on vertical shafts are the most common solution, as seen in helicopters and multirotors. A much less popular solution is the cyclocopter, which consists of a pair of rotors spinning around a horizontal shaft with horizontal blades. [Nicholas Rehm] built a remote-controlled cyclocopter as part of a research project and gave us an excellent overview of this unique craft in the video after the break.

Also known as the cyclogyro, the idea is not new, with the first one constructed in 1909. The first flight was a long time later in the 1930s, but it was quickly discovered that they were too unstable to be flown manually by a human, so the idea was shelved. Thanks to modern microcontrollers, researchers have recently been able to build small-scale versions, like the tiny example from the University of Texas.

Lift is produced using four or more airfoils on each of the two cycloidal rotors. At the top and bottom of rotation they have a positive angle of attack, with a neutral angle on the sides. The blades’ angle of attack can be adjusted to produce forward or reverse thrust. An additional motor with a conventional propeller is mounted on the nose to counteract the torque created by the main rotors, similar to a helicopter’s tail rotor.

Unlike multirotors, cyclocopters don’t need to pitch forward to move horizontally. The blades also don’t need to be tapered and twisted like a conventional rotorcraft, since the relative airflow velocity remains constant along the length of the blade. However, they have some significant downsides that will likely prevent them from moving beyond the experimental stage for the foreseeable future. The rotors are quite complex mechanically and need to be very lightweight since the design doesn’t lend itself to great structural strength. This was demonstrated by [Nicholas] when a minor crash snapped one of the rotor arms. However, it is an excellent demonstration of the adaptability of [Nicholas]’ open-source dRehmFlight flight controller, which he has also used to fly a VTOL F-35 and belly-flopping starship.

Would you be surprised that this isn’t our first cyclocopter hack?
Continue reading “Cyclocopter Flies With Eight Spinning Horizontal Wings”