Hacking The Bluetooth-Enabled Anker Prime Power Bank

Selling power banks these days isn’t easy, as you can only stretch the reasonable limits of capacity and output wattage so far. Fortunately there is now a new game in town, with ‘smart’ power banks, like the Anker one that [Aaron Christophel] recently purchased for reverse-engineering. It features Bluetooth (BLE), a ‘smart app’ and a rather fancy screen on the front with quite a bit of information. This also means that there’s a lot to hack here beyond basic battery management system (BMS) features.

As detailed on the GitHub project page, after you get past the glue-and-plastic-clip top, you will find inside a PCB with a GD32F303 MCU, a Telink TLSR8253 BLE IC and the 240×240 ST7789 LCD in addition to a few other ICs to handle BMS functions, RTC and such. Before firmware version 1.6.2 you can simply overwrite the firmware, but Anker added a signature check to later firmware updates.

The BLE feature is used to communicate with the Anker app, which the official product page advertises as being good for real-time stats, smart charging and finding the power bank by making a loud noise. [Aaron] already reverse-engineered the protocol and offers his own alternative on the project page. Naturally updating the firmware is usually also done via BLE.

Although the BLE and mobile app feature is decidedly a gimmick, hacking it could allow for some interesting UPS-like and other features. We just hope that battery safety features aren’t defined solely in software, lest these power banks can be compromised with a nefarious or improper firmware update.

Continue reading “Hacking The Bluetooth-Enabled Anker Prime Power Bank”

Upgrading A Cheap LX-2BUPS UPS Board To Fix Fatal Flaws

Cheap uninterruptable power supply (UPS) boards that take Li-ion cells of some description seem to have cropped up everywhere the past years. Finding use in applications such as keeping single-board computers ticking along in the case of a power failure, they would seem to be a panacea. Unfortunately most of these boards come with a series of fatal flaws, such as those that [MisterHW] found in an LX-2BUPS board obtained from AliExpress. Worst of all was the deep discharge of the Li-ion cells to below 2 V, which took some ingenuity and hard work to fix this and other problems.

The patched up XR2981 boost IC with MCP809 reset IC installed. (Credit: [MisterHW])
The patched up XR2981 boost IC with MCP809 reset IC installed. (Credit: [MisterHW])
This particular board is rated for 5V at 3A, featuring the all too common TP4056 as charging IC and the XYSemi XR2981 boost converter. Since there is no off-switch or other protections on the board, the XR2981 will happily keep operating until around 2.6V, at a rather astoundingly high idle power consumption. Because of this the fixes mostly concentrated on optimizing the XR2981, by using better resistor values (R7, R8, R9), as well as adding a 3.15V MCP809 reset IC, to reduce idle power usage of the boost converter and disable it below a safe cell voltage.

The final coup de grâce was the eviction of the red LED (D6) and replacing it with the blue LED from D2, to stop the former from draining the cell as well. With these changes in place, no-load power usage dropped from nearly 900 µA to just over 200 µA, while preventing deep discharge. Although this board now has a second life, it does raise the question of what the point of these cheap UPS boards is if you have to spend money and time on reworking them before they’re somewhat acceptable. What is your go-to solution for these boards?

The charging station on the table, with twelve powerbanks plugged into it, charging. A small meter on the front panel shows 4.73 volts and 4.38 amps.

A Simple Charging Station For Twelve Powerbanks

[jasonwinfieldnz] uses twelve small powerbanks day to day – powering LED strips around his trampoline, presumably, to avoid the mess of wires and make the assembly easily portable. However, if you have twelve powerbanks, you’ll find yourself hogging all the household’s microUSB cables every so often, as they eventually discharge. This was not good enough for our hacker, and he decided to build a charging station to refill them all at once.

If you need 5 volts and many amps, an ATX PSU isn’t your worst bet. From there, he only had to add twelve microUSB connectors to – and condensed the entire contraption into a beautiful charging station. For the microUSB part, he hacked some microUSB cable ends off and embedded them into the case. An embedded voltage and current module is of big help – letting you see at a glance when charging has really finished. Using copper tape as bus bars and banana plugs for charging input, this project is easy to build and solves the problem well.

The 3D printing files and cutting templates are right there on the project page, so if any of us hackers has a problem that twelve powerbanks could help with, [Jason]’s project is quite repeatable. If your devices are more diverse, you could use a pegboard to build a stylish charging station for them! If, on the other hand, you have a single device you need to plug multiple cords into, moldable plastic is there to help.

The Mighty D Battery Becomes A USB Powerbank

[Jan] is one of those people who’s always playing around with synthesizers, and in this day and age, that means a lot of USB cables supplying power. If you want to make a synth setup portable, your best option is looking at USB powerbanks with their fancy lithium cells. These will work just fine, but remember: you can buy D cells just about anywhere, and they actually hold a ridiculous amount of energy. They’re cheap albeit one-use and disposable, so why not build a USB power bank out of a massive pair of batteries?

The build started off, naturally, with a pair of Energizer D cells that hold 20,000mAh. A battery holder for these cells is cheap and easy to source, leaving the only other needed component a cheap 5V boost converter. This was simply hot glued to the back of the battery holder in parallel, a simple switch was added, and the entire thing was fitted in a neat little 3D printed case that looks like a car (motorcycle?) battery.

Testing the with a phone revealed this thing will charge at 570mA from 3V, which is more than sufficient for [Jan]’s needs. Sure, using disposable batteries in 2018 is more than a little wasteful, but a project like this is meant to be a simple solution to the problem of providing power to USB devices anywhere. You can get D cell batteries everywhere, and what this build produces in damage to the environment is more than made up for in its convenience.