What’s An LCR Databridge?

[Thomas Scherrer] has an odd piece of vintage test equipment in his most recent video. An AIM LCR Databridge 401. What’s a databridge? We assume it was a play on words of an LCR bridge with a digital output. Maybe. You can see a teardown in the video below.

Inside the box is a vintage 1983 Z80 CPU with all the extra pieces. The device autoranges, at least it seems as much. However, the unit locks up when you use the Bias button, but it isn’t clear if that’s a fault or if it is just waiting for something to happen.

The teardown starts at about six minutes in. Inside is a very large PCB. The board is soldermasked and looks good, but the traces are clearly set by a not-so-steady hand. In addition to AIM, Racal Dana sold this device as a model 9341. The service manual for that unit is floating around, although we weren’t able to download it due to a server issue. A search could probably turn up copies.

Continue reading “What’s An LCR Databridge?”

DIY High Stability Timebase Hack For ~$25. Why? Frequency Stability Matters!

DIY High Stability Timebase OCXO

If you have an old “Racal-Dana 199x” frequency counter or similar 10 MHz internally referenced gear with a poor tolerance “standard quartz crystal oscillator” or bit better “temperature compensated crystal oscillator” (TCXO) you could upgrade to a high stability timebase “oven controlled crystal oscillator” (OCXO) for under $25. [Gerry Sweeney] shares his design and fabrication instructions for a DIY OCXO circuit he made for his Racal-Dana frequency counter. We have seen [Gerry] perform a similar upgrade to his HP 53151A, however, this circuit is more generic and can be lashed up on a small section of solderable perf board.

Oven controlled oscillators keep the crystal at a stable temperature which in turn improves frequency stability. Depending on where you’re starting, adding an OCXO could improve your frequency tolerance by 1 to 3 orders of magnitude. Sure, this isn’t as good as a rubidium frequency standard build like we have seen in the past, but as [Gerry] states it is nice to have a transportable standalone frequency counter that doesn’t have to be plugged into his rubidium frequency standard.

[Gerry’s] instructions, schematics and datasheets can be used to upgrade any lab gear which depends on a simple 10 MHz reference (crystal or TXCO). He purchased the OCXO off eBay for about $20 — it might be very old, yet we are assured they get more stable with age. Many OCXO’s require 5 V, 12 V or 24 V so your gear needs to accommodate the correct voltage and current load. To calibrate the OCXO you need a temperature stable variable voltage reference that can be adjusted from 1 to 4 volts. The MAX6198A he had on hand fit the bill at 5 ppm/°C temperature coefficient. Also of importance was to keep the voltage reference and trim pot just above the oven for added temperature stability as well as removing any heat transfer through the mounting screw.

You can watch the video and get more details after the break.

Continue reading “DIY High Stability Timebase Hack For ~$25. Why? Frequency Stability Matters!”