CAL 3D Printing Spins Resin Right Round, Baby

Computed Axial Lithography (CAL) is a lighting-fast form of volumetric 3D printing that holds incredible promise for the future, and [The Action Lab] filmed it in action at a Berkeley team’s booth at the “Open Sauce” convention.

The basic principle works like this: an extra-viscous photopolymer resin sits inside a rotating, transparent cylinder. As the cylinder rotates, UV light is projected into the resin in patterns carefully calculated to reproduce the object being printed. There are no layers, no FEP, and no stop-and-start; it’s just one long exposure from what is effectively an object-generating video, and it does not take long at all. You can probably guess that the photo above shows a Benchy being created, though unfortunately, we’re not told how long it took to produce.

Don’t expect to grab a bottle of SLA resin to get started: not only do you need higher viscosity, but also higher UV transmission than you get from an SLA resin to make this trick work. Like regular resin prints, the resolution can be astounding, and this technique even allows you to embed objects into the print.

This handle was printed directly onto the shaft of the screwdriver.

It’s not a new idea. Not only have we covered CAL before, we even covered it being tested in zero-G. Floating in viscous resin means the part couldn’t care less about the local gravity field. What’s interesting here is that this hardware is at tabletop scale, and looks very much like something an enterprising hacker might put together.

Indeed, the team at Berkeley have announced their intention to open-source this machine, and are seeking to collaborate with the community on their Discord server. Hopefully we’ll see something more formally “open” in the future, as it’s something we’d love to dig deeper into — and maybe even build for ourselves.

Thanks to [Beowulf Shaeffer] for the tip. If you are doing something interesting with photopolymer ooze (or anything else) don’t hesitate to let us know! Continue reading “CAL 3D Printing Spins Resin Right Round, Baby”

Xolography: A Method To Improve The Accuracy Of Volumetric 3D Printing

Over the past years, additive manufacturing (AM) has become a common tool for hackers and makers, with first FDM and now SLA 3D printers becoming affordable for the masses. While these machines are incredibly useful, they utilize a slow layer-by-layer approach to produce objects. A relatively new technology called Volumetric Additive Manufacturing (VAM) promises to change all that by printing the entire object in one go, and according to a recent article in Nature, it just got a big resolution boost.

The concept is similar to SLA printing, but instead of curing the resin by projecting a 2D image of the current layer into the container, VAM uses multiple lasers to create intersecting points within the liquid. After exposing the resin to this projection for several seconds, the 3D model is built all at once. Not only is this far faster, but it removes the need for support materials and even a traditional build plate is unnecessary.

Visualization of the dual-color printing process as used by Regehly et al. (Credit: Nature)

Up till now the resolution and maximum object size of VAM has left a lot to be desired, but in this new research by Regehly et al. claim to have accomplished a feature resolution of ‘up to 25 micrometers’ and a solidification rate of ‘up to 55 cm3/s’. They used two crossing laser beams of different wavelengths, one to form the ‘light sheet’ (blue in the graphic) and a second beam (in red) to project the slide onto this light sheet. They refer to this technique as ‘xolography’, as a mesh-up of ‘holo’ (Greek for ‘whole’) and the ‘X’ shape formed by the crossing laser beams.

Key to making this work is the chemistry of the resin: the first wavelength excites the molecules called DCPI (Dual-Color Photo Initiators) that are dissolved in the resin. The second wavelength when hitting the same molecules initiates the resin polymerization process. The object pictured at the top of the page was a test print; producing such a design on a traditional 3D printer would have required a considerable amount of difficult to remove support material.

While this is obviously not a technology hobbyists will be using to replace their FDM and SLA printers with any time soon, there are still many companies and institutes working on various VAM technologies and approaches. As more and more of the complexities and challenges are dealt with, who knows when VAM may become a viable replacement for at least some SLA applications?

Thanks to [Qes] for the tip.