3D Printering: Print Smoothing Tests with UV Resin

Smoothing the layer lines out of filament-based 3D prints is a common desire, and there are various methods for doing it. Besides good old sanding, another method is to apply a liquid coating of some kind that fills in irregularities and creates a smooth surface. There’s even a product specifically for this purpose: XTC-3D by Smooth-on. However, I happened to have access to the syrup-thick UV resin from an SLA printer and it occurred to me to see whether I could smooth a 3D print by brushing the resin on, then curing it. I didn’t see any reason it shouldn’t work, and it might even bring its own advantages. Filament printers and resin-based printers don’t normally have anything to do with one another, but since I had access to both I decided to cross the streams a little.

The UV-curable resin I tested is Clear Standard resin from a Formlabs printer. Other UV resins should work similarly from what I understand, but I haven’t tested them.

Continue reading “3D Printering: Print Smoothing Tests with UV Resin”

Review of the Moai SLA 3D Printer

It is funny how we always seem to pay the same for a new computer. The price stays the same, but the power of the computer is better each time. It would appear 3D printers may be the same story. After all, it wasn’t long ago that sinking a thousand bucks or more on a 3D printer wouldn’t raise any eyebrows. Yet today you can better printers for a fraction of that and $1,300 will buy you an open source Moai SLA printer as a kit. [3D Printing Nerd] took a field trip to MatterHackers to check the machine out and you can see the results in the video below.

The printer uses a 150 mW laser to make parts up to 130 mm by 130 mm by 180 mm. The laser spot size is 70 micron (compare that to the typical 400 micron tip on a conventional printer). The prints require an alcohol bath after they are done followed by a UV curing step that takes a few hours.

Continue reading “Review of the Moai SLA 3D Printer”

What Would Sherlock Print, If Sherlock Printed In SLA Resin?

Resin printing — or more appropriately, stereolithography apparatus printing — is a costly but cool 3D printing process. [Evan] from [Model3D] wondered if it was possible to produce a proper magnifying glass using SLA printing and — well — take a gander at the result.

A quick modeling session in Fusion 360 with the help of his friend, [SPANNERHANDS 3D Printing] and it was off to the printer. Unfortunately, [Evan] learned a little late that his export settings could have been set to a higher poly count — the resultant print looked a little rough — but the lens would have needed to be sanded anyway. Lucky coincidence! After an eight hour print on his Peopoly Moai using clear SLA resin, [Evan] set to work sanding.

Continue reading “What Would Sherlock Print, If Sherlock Printed In SLA Resin?”

Hackaday Prize Entry: DIY LCD based SLA 3D Printer

Resin-based SLA 3D printers are seen more and more nowadays but remain relatively uncommon. This Low Cost, Open Source, LCD based SLA 3D Printer design by [Dylan Reynolds] is a concept that aims to make DIY SLA 3D printing more accessible. The idea is to use hardware and manufacturing methods that are more readily available to hobbyists to create a reliable and consistent DIY platform.

[Dylan]’s goal isn’t really to compete with any of the hobbyist or prosumer options on the market; it’s more a test bed for himself and others, to show that a low-cost design that takes full advantage of modern hardware like the Raspberry Pi can be made. The result would be a hackable platform to let people more easily develop, experiment, or simply tamper with whatever part or parts they wish.

CES2017: Really, Really Big SLA Printing

Last year at CES, UniZ introduced the Slash, a desktop resin printer. It’s fast, it’s capable, and it’s shipping now, but there was something else in the UniZ booth that had a much bigger wow factor.

The UniZ zSLTV is a gigantic box, a little more than one meter wide, and a little less than one meter tall and deep. Open the lid, and you see a gigantic resin printer turned on its side. The idea here is to fill a gigantic tank with resin, (the build volume is 521 x 293 x 600 mm) and use it as a fairly standard UV LED / LCD resin printer. The only real difference between this machine and any other resin printer is that the part is always submerged in resin.

It’s something we’ve never seen before, and it will be available ‘soon’. The price for this huge machine is in the ballpark of $10,000.

Design and Testing of the Form 2

Formlabs makes a pretty dang good SLA printer by all accounts. Though a bit premium in the pricing when compared to the more humble impact of FDM printers on the wallet, there’s a bit more to an SLA printer. The reasoning becomes a bit more obvious when reading through this two part series on the design and testing of the Form 2.

It was interesting to see what tests they thought were necessary to ensure the reliable operation of the machine. For example the beam profile of every single laser that goes into a printer is tested to have the correctly shaped spot. We also thought the Talcum powder test was pretty crazy. They left a printer inside a sandblast cabinet and blasted it with Talcum powder to see if dust ingress could cause the printer to fail; it didn’t.

The prototyping section was a good read. Formlabs was praised early on for the professional appearance of their printers. It was interesting to see how they went from a sort of hacky looking monstrosity to the final look. They started by giving each engineer a Form 1 and telling them to modify it in whatever way they thought would produce a better layer separation mechanism. Once they settled on one they liked they figured out how much space they’d need to hold all the new mechanics and electronics. After that it was up to the industrial designer to come up with a look that worked.

They’re promising a third part of the series covering how the feedback from beta testing was directed back into the engineering process. All in all the Form 2 ended up being quite a good printer and the reviews have been positive. The resin from Formlab is a little expensive, but unlike others they still allow users to put the printer in open mode and use other resin if they’d like. It was cool to see their engineering process.

Portable Battery Bank Only Looks Like a Bomb

If one of the design goals of [wsw4jr]’s portable solar battery bank build was to make something that the local bomb squad would not hesitate to detonate with a water cannon if he leaves it unattended, then mission accomplished.

We kid, but really, the whole thing has a sort of “Spy vs. Spy” vibe that belies its simple purpose. A battery bank is just an array of batteries, some kind of charge controller, and an inverter. The batteries are charged by any means possible – in this case by a small array of solar panels. The mains output of the inverter is used to power whatever doodads you have.

[wsw4jr] didn’t mention of the inverter specs, but from the size of the batteries and the wiring – both of which he admits are not yet up to snuff in his prototype – it’s a safe guess that the intended loads are pretty small.  Tipping the scale at 60 pounds, the unit tends toward the luggable end of the portability scale. Still, this could be a great tool for working out in the field, or maybe even tailgating.

We’ve seen expedient battery banks and emergency power from cordless drill batteries before, but this build is quite a bit more sophisticated. We’ll be watching for updates on this one.