Open-Source Water Quality Tester

Open-Source Water Quality Tester

Contaminated water is a huge problem in many third-world countries. Impure water leads to many serious health problems, especially in children. Installing a water purification system seems like a simple solution to this problem, but choosing the right purification system depends on the level of contaminants in the water.

Water turbidity testers are often used to measure the severity of water contamination. Unfortunately most commercial water turbidity testers are very expensive, so [Wijnen, Anzalone, and Pearce] set out to develop a much more affordable open-source tester. Their tester performs just as well as commercial units, but costs 7-15 times less.

The open-source water tester was designed in OpenSCAD and 3d printed. It houses an Arduino with a custom shield that measures the frequency from several TSL235R light-to-frequency converters. An LED illuminates the water and the sensors measure how much light is diffused and reflected off of particles in the water. Another sensor measures the brightness of the LED as a baseline reference. The turbidity of the water is calculated from the brightness values, and is displayed on a character LCD. More details about the tester are included in a fairly extensive paper.

[Thanks Andrew]

Water purification uses home-built electrolysis rig

If you plan ahead a little bit you could have your own system of water purification to use in emergencies. Everyone needs clean drinking water and this gadget will let your produce your own purification drops quite easily.

The solution contains chlorine, which is created through electrolysis. The PVC cap seen near the bottom of the image has two electrodes sticking out of it. These are titanium plated mesh plates separated by a rubber ring. The cap has a small hole in it to keep the flow rate low and the fitting at the top acts as a funnel. When you pour in a salt water mixture it passes through the energized plates and a chemical reaction splits the sodium from the chlorine.

A twelve volt power source is necessary for this to work. But since the electrolytic process takes just a minute or two you could easily source the power from batteries charged with solar cells. Check out a full build walk through and demonstration video after the break.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 96,742 other followers