ElectriPop Turns Cut Mylar Into Custom 3D Structures

Mylar has a lot of useful properties, and as such as see it pop up pretty often, not just in DIY projects but in our day-to-day lives. But until today, we’ve never seen a piece of Mylar jump up and try to get our attention. But that’s precisely the promise offered by ElectriPop, a fascinating project from Carnegie Mellon University’s Future Interfaces Group.

The core principle at work here is fairly simple. When electrostatically charged, a strip of Mylar can be made to lift up vertically into the air. Cut that strip down the center, and the two sides will repel each other and produce a “Y” shape. By expanding on that concept with enough carefully placed cuts, it’s possible to create surprisingly complex three dimensional shapes that pop up once a charge is applied. A certain degree of motion can even be introduced by adjusting the input power. The video after the break offers several examples of this principle in action: such as a 3D flower that either stands up tall or wilts in relation to an external source of data, or an avatar that flails its arms wildly to get the user’s attention.

A mini Van de Graaff produces a variable static charge.

As the relationship between the nested cuts, slits, and holes placed in the Mylar sheet and the final 3D shape isn’t particularly intuitive, the team has developed a visualization tool that can be used in conjunction with existing vector art programs to create a 2D cut file. Once you’re satisfied the design will inflate to the intended shape, it can quickly be implemented with a vinyl cutter or laser. The low barrier to entry makes this project particularly well suited for DIY replication, and we’re eager to see how the maker community could put this concept to work.

There are plenty of ways that you can charge up your new shape-changing Mylar display, but we particularly liked the team’s miniature Arduino-controlled Van de Graaff generator. It may represent the smallest and most simplistic implementation of this classic high-voltage generator that we’ve ever seen, and looks like a fun little project in itself.

ElectriPop was developed by [Cathy Mengying Fang], [Jianzhe Gu], and [Lining Yao] in collaboration with the director of the Future Interfaces Group, [Chris Harrison]. Readers may recall that in 2018 we covered VibroSight, another project from [Chris] and his students, which ultimately was scaled up to demonstrate laser non-contact sensing on city-scale just last year. Stay tuned for more from this innovative lab in the near future.

14 thoughts on “ElectriPop Turns Cut Mylar Into Custom 3D Structures

    1. The conductive foil will be helping it “pop” quickly but a non-conductive plastic that was very thin, and reasonably rigid and doesn’t stick to the surface would work but possibly a little slower to “pop”.

    1. new technology is typically critiqued with, “.. but there’s no practical application”. I could think of dozens of applications for this. Put next to solar panels, tuned to reflect additional sunlight in, while keeping birds off. Deaf person phone ring alert system (add sunlight/spotlight). Bird alert system from soffit: unfurl to stop birds crashing into windows. Cat toy w kitty bringing the “static”. Micro satellite cooling systems. Nanite joint mechanisms/models. Invisible animal fencing. Happy Friday

      1. Pranking.

        Make moving spider, ghost, kali, abortion, demon, zombie, balrog, dragon…rest of prank left as exercise for student.

        Video spectators ‘evacuating’. Fun for all, they will laugh at themselves later.

        Making something complicated will require some hard parts, maybe regular robotics, and more then one piece of Mylar. Also a 555.

Leave a Reply to PWalshCancel reply

Please be kind and respectful to help make the comments section excellent. (Comment Policy)

This site uses Akismet to reduce spam. Learn how your comment data is processed.