Secret Messages On Plastic, Just Add Tesla Coil

Here’s a short research paper from 2013 that explains how to create “hydroglyphics”, or writing with selecting surface wetting. In it, an apparently normal-looking petri dish is treated so as to reveal a message when wetted with water vapor. The contrast between hydrophobic and hydrophilic surfaces, which is not visible to the naked eye, becomes visible when misted with water. All it took was a mask, and a little treatment with a modified Tesla coil.

Plastics tend to be hydrophobic, meaning their surface repels water. These plastics also tend to be non-receptive to things like inks and adhesives. However, there is an industrial process called corona treatment (invented by Verner Eisby in 1951) that changes the surface energy of materials like plastics, rendering them more receptive to inks, coatings, and adhesives. Eisby’s company Vetaphone still exists today, and has a page describing the process.

What’s this got to do with the petri dishes and their secret messages? The process is essentially the same. By using a Tesla coil modified with a metal wire mesh, the surface of the petri dish is exposed to the coil’s discharge, altering its surface energy and rendering it hydrophilic. By selectively blocking the discharge with a nonconductive mask made from a foam sticker, the masked area remains hydrophobic. Mist the surface with water, and the design becomes visible.

The effects of corona treatment decay over time, but we think this is exactly the sort of thing that is worth keeping in mind just in case it ever comes in useful. Compact Tesla coils are fairly easy to get a hold of nowadays, but it’s also possible to make your own.

Cheap Musical Tesla Coil Put Through Its Paces

Once upon a time, musical Tesla coils were something you primarily saw at high-voltage hobby meets. They’ve become more popular in recent years, and now you can even buy cheap examples online. [mircemk] decided to buy one and gave it a whirl.

The device comes with a power supply capable of delivering 2 amps at 48 V.  It’s a solid-state design, relying on SMD MOSFETs to generate high-voltage, high-frequency output that makes the sparks we all know and love. The pancake coil is key to the design, and is made using a trace on the PCB — a neat technique compared to making one with a laborious winding operation.

The coil can be used to simply generate sparks, or it can be modulated musically. In this mode of operation, it’s intended to be driven by square wave audio for simplicity’s sake. As seen in [mircemk]’s video, the sound quality is pretty decent for a cheap device, and the Super Mario theme is readily recognizable. As a guide, he also demonstrates how to drive the device using an Arduino set up for square wave audio output.

If you prefer to build your own singing Tesla coil, you can go that route instead. Or, you could buy one of these and hack it, and drop us a line with what you come up with! Similar devices are all over the ‘net. Continue reading “Cheap Musical Tesla Coil Put Through Its Paces”

High-Voltage Fun With An Inexpensive Power Supply

It used to be that nearly every home had at least one decent high-voltage power supply. Of course, it was dedicated to accelerating electrons and slamming them into phosphors so we could bathe ourselves in X-rays (not really) while watching Howdy Doody. These days the trusty tube has been replaced with LEDs and liquid crystals, which is a shame because there’s so much fun to be had with tens of thousands of volts at your disposal.

That’s the impetus behind this inexpensive high-voltage power supply by [Sebastian] over at Baltic Labs. The heavy lifting for this build is done by a commercially available power supply for a 50-watt CO2 laser tube, manufactured — or at least branded — by VEVOR, a company that seems intent on becoming the “Harbor Freight of everything.” It’s a bold choice given the brand’s somewhat questionable reputation for quality, but the build quality on the supply seems decent, at least from the outside. [Sebastian] mounted the supply inside a rack-mount case, as one does, and provided some basic controls, including the obligatory scary-looking toggle switch with safety cover. A pair of ammeters show current and voltage, the latter with the help of a high-voltage resistor rated at 1 gigaohm (!). The high-voltage feedthrough on the front panel is a little dodgy — a simple rubber grommet — but along with the insulation on the high-voltage output lead, it seems to be enough.

The power supply’s 30 kV output is plenty for [Sebastian]’s current needs, which from the video below appear to mainly include spark gap experiments. He does mention that 50 kV commercial supplies are available too, but it would be tough to do that for the $150 or so he spent on this one. There are other ways to go, of course — [Niklas] over at Advanced Tinkering recently shared his design for a more scratch-built high-voltage supply that’s pretty cool too. Whatever you do, though, be careful; we’ve been bitten by a 50 kV flyback supply before and it’s no joke.

Continue reading “High-Voltage Fun With An Inexpensive Power Supply”

20,000 Volt Plasma Knife Slices, Dices, And Sparks

For the most part, here at Hackaday we’re more interested in how something was made than the backstory on why an individual actually put it together. Frankly, it’s not really our business. But we’ve been around long enough to know that practicality isn’t always the driving force. Some folks build things because they want to challenge themselves, others because there’s nothing commercially available that quite meets their needs. Of course, there’s another camp that just builds things to look cool.

In the case of the plasma-infused blade [Jay Bowles] recently put together for Plasma Channel, we imagine it was a bit from each column. The basic inspiration was to create something in the style of the “Energy Sword” from Halo, but the resulting electrified blade is no mere prop. Inside the 3D printed enclosure, it packs not only the electronics necessary to produce 20,000 volts from the built-in battery pack, but a fan to help push the resulting plasma down the length of the two-piece steel blade.

As you might expect, it took a few attempts to get there. In the video after the break, [Jay] shows off the design process and some earlier incarnations of the plasma knife that didn’t quite live up to expectations. While there were always some impressive sparks, the spacing of the blades and the output power of the miniature high-voltage generator both needed fine tuning before it resulted in the band of plasma he was aiming for.

Is there a practical use for such a thing? Well the spark between the blades can apparently be used to light stuff on fire, and of course, you can cut things with it. But realistically…no, not really. It just looks cool, which is fine by us.

Should you prefer your high-voltage experimentation to have a more clearly defined goal, you might be interested in the ongoing work [Jay] has been doing with ionic propulsion and magnetohydrodynamic drives (MHDs).

Continue reading “20,000 Volt Plasma Knife Slices, Dices, And Sparks”

Harvesting Electricity From High-Voltage Transmission Lines Using Fences

When you have a bunch of 230 kV transmission lines running over your property, why not use them for some scientific experiments? This is where the [Double M Innovations] YouTube channel comes into play, including a recent video where the idea of harvesting electricity from HV transmission lines using regular fences is put to an initial test.

The nearly final measurement by [Double M Innovations].
The nearly final voltage measurement by [Double M Innovations].
A rather hefty 88 µF, 1200 V capacitor, a full bridge rectifier, and 73 meters (240 feet) of coax cable to a spot underneath the aforementioned HV transmission lines. The cable was then put up at a height consistent with that of fencing at about 1.2 m (4 ft), making sure that no contact with the ground occurred anywhere. One end of the copper shield of the coax was connected to the full bridge rectifier, with the opposite AC side connected to a metal stake driven into the ground. From this the capacitor was being charged.

As for the results, they were rather concerning and flashy, with the 1000 VAC-rated multimeter going out of range on the AC side of the bridge rectifier, and the capacitor slowly charging up to 1000 V before the experiment was stopped.

Based on the capacity of the capacitor and the final measured voltage of 907 VDC, roughly 36.2 Joule would have been collected, giving some idea of the power one could collect from a few kilometers of fencing wire underneath such HV lines, and why you probably want to ground them if energy collecting is not your focus.

As for whether storing the power inductively coupled on fence wire can be legally used is probably something best discussed with your local energy company.

Continue reading “Harvesting Electricity From High-Voltage Transmission Lines Using Fences”

Lessons Learned From A High-Voltage Power Supply

When you set out to build a 60,000-volt power supply and find out that it “only” delivers a measly 50,000 volts, you naturally have to dive in and see where things can be improved. And boy, did [Advanced Tinkering] find some things to improve.

First things first: if you haven’t seen [Advanced]’s first pass at a high-voltage supply, you should go check that out. We really liked the design of that one, and were particularly impressed with the attention to detail, all of which seemed to be wisely geared to the safe operation of the supply. But as it turns out, the margin of safety in the original design wasn’t as good as it could be. Of most concern was the need to physically touch the supply to control it, an obvious problem should something go wrong anywhere along the HV path, which includes a ZVS-driven flyback and an epoxy-potted Crockcroft-Walton voltage multiplier.

To make things a little more hands-off, [AT] added a pneumatically actuated switch to the supply, along with some indicator lights to help prevent him from leaving the supply powered up. He also reworked the low-voltage DC supply section, replacing a fixed-voltage supply and a DC-DC converter with a variable DC supply. This had the side benefit of providing a little bit more voltage to the ZVS driver, which goosed up the HV output a bit. The biggest change, though, was to the potted part of the HV section, which showed signs of arcing to the chassis. It turns out that even at 100% infill, 3D printed PLA isn’t a great choice for HV projects; more epoxy was the answer to that problem. Along with rewinding the primary on the flyback transformer, the power supply not only hit the 60-kV spec, but even went a little past that — and all without any of that pesky arcing.

We thought [Advanced Tinkering]’s first pass on this build was pretty slick, but we’re glad to see that it’s even better now. And we’re still keen to see how this supply will be put to use; honestly, the brief teaser at the end of the video wasn’t much help in guessing what it could be.

Continue reading “Lessons Learned From A High-Voltage Power Supply”

Wiring Up 100 Car Batteries So You Don’t Have To

We’re willing to bet most Hackaday readers have accidentally spot welded a few electrical contacts together over the years, complete with the surge of adrenaline that comes with the unexpected pops and sparks. It’s a mistake you’ll usually only make once or twice. But where most of us would look back at such mishaps as cautionary experiences, [Styropyro] sees an opportunity.

Armed with 100 car batteries wired in parallel, his recent video sees him pitting an assortment of household objects against the combined might of eighty-five thousand amps. Threaded rods, bolts, and angle iron all produce the sort of lightshow you’d expect, but [Styropyro] quickly discovered that holding larger objects down was more difficult than anticipated. It turns out that the magnetic fields being generated by the incredible amount of current rushing through the system was pulling the terminals apart and breaking the connection. After reinforcing the business end of his rig, he was able to tackle stouter objects such as crowbars and wrenches with explosive results.

A modified log splitter serves as a remotely operated switch.

We found that his remotely operated switch, built out of a hydraulic log splitter, to be a particular highlight of the video — unfortunately he only briefly goes over its construction at the very start. His side experiment, fashioning an sort of manually-operated carbon arc lamp with a pair of thick graphite electrodes and demonstrating is luminous efficacy compared to modern LEDs was an unexpected treat. As was the off-the-shelf domestic circuit breaker that impressed [Styropyro] by refusing to yield even after repeated jolts.

While the showers of sparks and vaporized metal might trigger some sweaty palms among the audience, we’ve seen [Styropyro] handle far scarier contraptions in the past. Though he may come off as devil-may-care in his videos, we figure there’s no way he could have made it this long without blinding or maiming himself if he didn’t know what he was doing.

Continue reading “Wiring Up 100 Car Batteries So You Don’t Have To”